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2 Solutions to Homework Problems

Problems of Chapter 1

1.1

1. Letter frequency analysis of the ciphertext:

letter|count freq [%] letter|count freq [%]
A 5 0.77 N 17 2.63
B 68  10.53 (0] 7 1.08
C 5 0.77 P 30 4.64
D | 23 3.56 Q 7 1.08
E 5 0.77 R | 84 13.00
F 1 0.15 S 17 2.63
G 1 0.15 T 13 2.01
H | 23 3.56 U | 24 3.72
1 41 6.35 vV | 22 341
J 48 7.43 W | 47 7.28
K | 49 7.59 X | 20 3.10
L 8 1.24 Y 19 2.94
M | 62 9.60 Z 0 0.00

2. Because the practice of the basic movements of kata is
the focus and mastery of self is the essence of Matsubayashi
Ryu karate do, I shall try to elucidate the movements of
the kata according to my interpretation based on forty
years of study.

It is not an easy task to explain each movement and its
significance, and some must remain unexplained. To give
a complete explanation, one would have to be qualified
and inspired to such an extent that he could reach the
state of enlightened mind capable of recognizing soundless
sound and shapeless shape. I do not deem myself the final
authority, but my experience with kata has left no doubt
that the following is the proper application and interpretation.
I offer my theories in the hope that the essence of Okinawan
karate will remain intact.

3. Shoshin Nagamine, further reading: The Essence of Okinawan Karate-Do by
Shoshin Nagamine, Tuttle Publishing, 1998.

1.3
One search engine costs $ 100 including overhead. Thus, 1 million dollars buy
us 10,000 engines.

1. key tests per second: 5- 108 10* = 5-10'? keys/sec
On average, we have to check (2'?7 keys:
(21%7keys) /(5 - 10"%keys/sec) = 3.40 - 10%sec = 1.08 - 10'8years
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That is about 108 = 100,000,000 times longer than the age of the universe. Good
luck.

. Let i be the number of Moore iterations needed to bring the search time down to

24h:

1.08 - 10'8years - 365/2/ = 1day

21 =1,08-10'%.365days/1day

i=68.42

We round this number up to 69 assuming the number of Moore iterations is dis-
creet. Thus, we have to wait for:

1.5-69 = 103.5 years

Note that it is extremely unlikely that Moore’s Law will be valid for such a time
period! Thus, a 128-bit key seems impossible to brute-force, even in the foresee-
able future.

1.5

. On the last field there are 2% grains

263.0,03

. The amount is 7500 = 576.46 times the yearly rice grain yield.

210.0, 1mm = 102,4mm = 10,24cm

. lkm = 10°mm = log,(107) = 23,25 = The paper needs to be folded 24 times.
. 1og2(107 -384400) = 41,81 = The paper needs to be folded at least 42 times.
. 10g2(107 - 9460730472580.8) = 66,36 = The paper needs to be folded at least

67 times.

1.7

1.
2.
3.
4.

1529 mod 13=2-3 mod 13 =6 mod 13
2:-29mod 13=2-3mod 13 =6 mod 13
2-3mod 13=2-3 mod 13 =6 mod 13
2-3mod 13=2-3mod 13 =6 mod 13

15,2 and -11 (and 29 and 3 respectively) are representations of the same equivalence
class modulo 13 and can be used “synonymously”.



1.9

Multiplication table for Zy

Addition table for Zs

x[0123

00000
1(0123
20202
310321

+01234

Addition table for Zg

001234
112340
2123401
3134012
4140123

+012345

0012345
1123450
21234501
3345012
41450123
5501234

Solutions to Homework Problems

Multiplication table for Zs

01234
00000
01234
02413
03142
04321

X
0
1
2
3
4

Multiplication table for Zg

012345
000000
012345
024024
030303
042042
054321

X
0
1
2
3
4
5

Elements without a multiplicative inverse in Z are 2 and 0

Elements without a multiplicative inverse in Zg are 2, 3,4 and 0
For all nonzero elements of Zs exists because 5 is a prime. Hence, all nonzero

elements smaller than 5 are relatively prime to 5.

x=7>=49=10 mod 13

x=310=95=812.9=32.9=81=3 mod 13

x="7190=49% =100 = (-3) =

1.11

1. x=9mod 13
2.

3.

4,

5. by trial: 7° =

11 mod 13

(319 =3%=32=9 mod 13
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1.13

1. FIRST THE SENTENCE AND THEN THE EVIDENCE SAID THE QUEEN
2. Charles Lutwidge Dodgson, better known by his pen name Lewis Carroll

1.15

a=(x —xz)fl(yl —y2) mod m
b =y, —ax; mod m

The inverse of (x; —xp) must exist modulo m, i.e., gcd((x; —xp),m) = 1.
1.17

1. {9,0,12,0,8,10,0}

2. LOPEJBEJKQRA
Example S: 18 +9mod 26 =1=B

3. One can consider the Vigenere cipher as consisting of / shift ciphers that are used
cyclically and it is, thus, barely more secure than the standard shift cipher. Here
is an attack:

Let’s assume the adversary knows the value of /. He then sorts the ciphertext
in / bins: the first containing the letters cg,cy, ¢y, ..., the second bin contains
€1,C1+1,C21+1,-- -, and so on. Since each bin consists of letters that have been
shifted by the same key value k;, we can now apply normal frequency analysis to
each bin and will easily find all key values kg, k1, ..., k1.

The remaining problem is how the adversary obtains /. In practice, the easiest
approach is to simply guess different values for /. In the first iteration, the at-
tacker assumes / = 1 and performs the attack and checks whether he obtains
valid plaintext. If not, he assumes [ = 2, performs the attack and again checks
for a valid plaintext. Most likely, incorrect values for / will not give meaningful
plaintexts but the correct / value will immediately be recognizable by a correct
(and meaningful) plaintext.

Problems of Chapter 2

2.1

1. yi=x;+ K; mod 26
Xi=Yi— K,’ mod 26
The keystream is a sequence of random integers from Zyg.
2.x1=y1—K1="B"-"R’=1-17=—-16=10mod 26 ="K etc - - -
Decrypted Text: ’KASPAR HAUSER”
3. He was knifed.
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2.3 We need 128 pairs of plaintext and ciphertext bits (i.e., 16 byte) in order to
determine the key. s; is being computed by
Si :xi@)’i; i= 1727"' 7128

2.5 Plaintext:
4c 65 74 73 45 6e 63 72 79 70 74 54 68 69 73 42 6f 6f 6b
= LetsEncryptThisBook

2.7
N
U

Zi
1 0 0 =z,
1 1 ] =Z
1 1 1 =2,
0 1 1 =z,
1 0 1 =Z,
0 1 0 =Z
0 0 1 =2
1 0 0 =z=27

1. Sequence 1:2=00111010011101 ...

0 1 1 =2,
1 0 1 =z
0 1 0 =z,
0 0 1 =z,
1 0 ] =2,
1 1 0 =Z
1 1 1 =Z
0 1 1 =z=3%

2 Sequence 2:2=11010011101001 ...
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3. The two sequences are shifted versions of one another.

2.9 The feedback polynomial from 2.2 is x® +x* 4-x*> + x> + 1. So, the resulting first

N (M (Mg

WA
,H
]
N
N

T LI LI S o oo LI A
1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
0 0 1 1 1 0 0 1
1 0 0 1 1 1 0 0
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1

two output bytes are (1001000011111111), = (90FF ).
2.11

1. The attacker needs 512 consecutive plaintext/ciphertext bit pairs x;, y; to launch
a successful attack.

2.

a.
b.
c.

First, the attacker has to monitor the previously mentioned 512-bit pairs.

The attacker calculates s; = x;+y; mod 2,i =0,1,...,2m—1

In order to calculate the (secret) feedback coefficients p;, Oscar generates 256
linearly dependent equations using the relationship between the unknown key
bits p; and the keystream output defined by the equation

m—1
Sitm = Y. pj-sivjmod 2;s;,p; € {0,1}:i=0,1,2,...,255
j=0
with m = 256.

After generating this linear equation system, it can be solved e.g., using Gaus-
sian Elimination, revealing the 256 feedback coefficients.
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3. The key of this system is represented by the 256 feedback coefficients. Since the
initial contents of the LFSR are unalteredly shifted out of the LFSR and XORed
with the first 256 plaintext bits, it would be easy to calculate them.

2.13

xiPyi=xiPxiDz) =z

W <22 =10110,

P<=15=01111,

2.

J <9 =01001,

5<=31=11111,

1< 8=01000, A < 0= 00000,
x; =1011001111 01000
y; =01001 11111 00000
z; = 11111 10000 01000
1. Initialization Vector: (Zy =1,1,1,1,1,1)
Co 1\ /o
C, 111110 0
G| 111100 0
G| |111000 0
Cy 110000 0
Cs 100000 1
1
1
10
10
0
0
J 5 A 0 E D J 2 B
—~ —~ —~ —~ —~ —~ —~ —~
3. y;,=01001 11111 00000 11010 00100 00011 01001 11100 00001
zz=11111 10000 01000 01100 01010 01111 01000 11100 10010
x;=10110 01111 01000 10110 01110 01100 00001 00000 10011

. Wombats live in Australia.

5. Known-plaintext attack.
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2.15 The keystream is given by z; = 4,z;41 =228,7;1» = 187,zi43 =21,zi44 = 148
and yields the following system of equations:

Zit2 = ziv1-a+zi-b+cmodm (I)

Zi43 = Ziy2-a+2zip1-b+cmodm (1)

Zitd = Zi43-a+2zip2-b+cmod m (1)
inserting the values yields a system of linear eqn.:

187 =228-a+4-b+cmodm (I)

21 =187-a+228-b+cmod m (II)

148 =21-a+187-b+cmod m (III)
solving the system results in:

=a=132mod m

= b =246 mod m

= ¢ =204 mod m

2.17 The output of OR is computed as follows:
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a=a+b
= 0x00000001
d = ROTL'®(d ® a)
= ROTL'®(0x00000001)
= 0x00010000
c=c+d
= 0x00010000
b = ROTLZ(b®c)
= ROTL'?(0x00010000)
= 0x10000000
a=a+b
= 0x00000001 + 0x10000000
= 0x10000001
d = ROTL3(d ® a)
= ROTL3(0x00010000 & 0x10000001)
= ROTL¥(0x10010001)
= 0x01000110
c=c+d
= 0x00010000 + 0x01000110
= 0x01010110
b=ROTL(b®c)
= ROTL’(0x10000000 & 0x01010110)
= ROTL’(0x11010110)
= ROTL’(0x11010110)
= 0x80808808

Hence

OR(0x00000001,0x00000000, 0x00000000, 0x00000000)
= 0x10000001, 0x80808808,0x01010110,0x01000110



Solutions to Homework Problems 11

Problems of Chapter 3
3.1
1. s(x;)Ps(x2)=1110

s(x1 @XZ) = ( 2) 0000 75 1110
2. s(x1) @ s(xz) = 1001

s(x1 @xz) = ( 2) = 1000 75 1001
3. s(x1)@s(xz) = 1010

s(x1 @ x2) = s(x2) = 1101 #1010

3.3

Lety=1IP(x) and z =IP~'(y)

With y = (y1,¥2,...,Y64) and z = (21,22, .. ,264)
P P!

X1 —> Y40 — 21

X) —> Yy — 22

X3 —> Y48 — 33

X4 —> Y16 — 24

X5 —> Y56 — 25

3.5

Since (parts of) the key is simply XORed with Ly in the f-function, the input of the
S-boxes and hence, the output of the whole f-function, equals those in the previous
problem. S;(0) = 14 =1110

SZ(O) =15=1111

S3(0) =10 = 1010
S4(0)= 7 =0111
S5(0) = 2 =0010
Se(0) = 12 = 1100
$7(0) = 4 =0100
Sg(0) = 13 = 1101

P(S) = D8D8 DBBC
R, =Ly®P(S)=FFFF FFFF &D8D8 DBBC = 2727 2443
(Li,R\) = FFFF FFFF 2727 2443 (1)

3.7

1. First, the flipped bit is moved to position 8 by the PC-1 permutation: PC-1(1) =
8
After that, it is shifted shifted one position to the left: LS-1(8) =7
The PC-2 permutation chooses bit number 7 for roundkey generation of round
one:
PC-2(7) = 19, thus S-box 4 is affected
For the next rounds, the results are provided in a short form:
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Round 2: PC —2(LS, (7)) = PC —2(6) = 10 —> S-box S2

Round 3: PC —2(LS,(6)) = PC —2(4) = 16 — S-box S3

Round 4: PC —2(LS,(4)) = PC —2(2) = 24 —» S-box S4

Round 5: PC — 2(LS5(2)) = PC —2(2) = 28 —> S-box S8

Round 6: PC — 2(LS5(28)) = PC —2(26) = 17 — S-box S3

Round 7: PC —2(LS,(26)) = PC —2(24) = 4 —» S-box S1

Round 8: PC —2(LS,(24)) = PC—2(22) = X — no S-box affected
Round 9: PC —2(LS,(22)) = PC—2(21) = 11 —» S-box S2

Round 10: PC —2(LS,(21)) = PC —2(19) = 14 — S-box S3
Round 11: PC —2(LS(19)) = PC — 2(17) = 2 — S-box S1

Round 12: PC —2(LS,(17)) = PC — 2(15) = 9 — S-box S2

Round 13: PC —2(LS,(15)) = PC — 2(13) = 23 —» S-box S4
Round 14: PC —2(LS5(13)) = PC—2(11) = 3 —> S-box S1

Round 15: PC—2(LS,(11)) = PC—2(9) = X — no S-box affected
Round 16: PC — 2(LS; (9)) = PC —2(8) = 18 —» S-box S3

Note that the input changes to any of the S-boxes quickly spread in subsequent
round. For instance, the input change of S2 in Round 2 will affect several S-
Boxes in Round 3. This means that the single key bit influences not only the
S-boxes listed above but in fact all S-boxes after a few rounds.

2. Due to the fact, that the decryption roundkeys K;..(Round i) are equal to
Kenc(Round 16-1), the affected S-boxes are also the same, just in reversed order.

39
1. K1+,' = K15,i fori= 0, 1, A

2. Following (a), two equations are established:

Ciyi = Cio-i
Dyyi=Dyg-;  fori=0,1,...,7

These equations yield

Co,; = 0und Dy ; =0or

Coj =0und Dy ;=1or

Co,j = 1und Dy ; = 0 oder

Coj=1lundDy ;=1 for j=1,2,...,28.

Hence the four weak keys after PC-1 are given by:

Ky = [0...0 0...0]
K= 1[0...0 1...1]
Ky3=[1...10...0]
s = [1...1 1...1]
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3. P(randomly chose a weak key) = 22726 =274
3.1

Worst-Case: 2°¢ keys.

Average: 26 /2 = 2 keys.

3.13

1. A single DES engine can compute 100 - 10% DES encryptions per second. A CO-
PACOBANA machine can, thus, compute 4-6-20-100-10° = 4.8-10'° DES
encryptions per second. For an average of 23> encryptions for a successfull brute-
force attack on DES, 2% /(4.8 - 10'%) ~ 750600 seconds are required (which ap-
proximately is 8.7 days).

2. For a successfull average attack in one hour, 8.724 ~ 209 machines are required.

3. The machine performs a brute—force attack. However, there might be more pow-
erful analytical attacks which explore weaknesses of the cipher. Hence, the key—
search machine provides only an upper security threshold since brute—force is
always possible.

3.15

1. The state of PRESENT after the execution of one round is FO00 0000 0000
000F. Below you can find all intermediate values.

Plaintext 0000 0000 0000 0000
Round key BBBB 5555 5555 EEEE
State after KeyAdd|BBBB 5555 5555 EEEE
State after S-Layer {8888 0000 0000 1111
State after P-Layer [FO00 0000 0000 00OF

2. The round key for the second round is 7FFF F777 6AAA AAAA. Below you
can find all intermediate values.

[Key |[BBBB 5555 5555 EEEE FFFF|
Key state after rotation DFFF F777 6AAA AAAA BDDD
Key state after S-box 7FFF F777 6AAA AAAA BDDD

Key state after CounterAdd|7FFF F777 6AAA AAAA 3DDD
Round key for Round 2 TFFF F777 6AAA AAAA
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Problems of Chapter 4

4.1

1. The successor of the DES, the AES, was chosen by the NIST by a public pro-
ceeding. The purpose of this public contest was to allow broadly evaluation of
the candidates by as many research organisations and institutes as possible.

This strongly contrasts to the development of DES, which was only performed
by IBM and the NSA firstly keeping details (e.g., the S-boxes) in secret. DES
was published and standardized in 1975.

2. 1/2/97: Call for algorithms, which could potentially lead to the AES. The selec-
tion process was governed by the NIST. 8/20/98: 15 algorithms were nominated
as candidates for the selection process.

9.8.1999: 5 algorithms reach the “finals” (Mars, RC6, Rijndael, Serpent, Twofish)
2.10.2000: NIST elects Rijndael to AES.

. Rijndael

. Dr. Vincent Rijmen and Dr. Joam Daemen from Belgium

5. Rijndael supports blocksizes of 128, 192 and 256 bits, as well as key lengths of
128, 192 and 256 bits. In fact, only the version with 128 bits blocksize (and all
three key lengths) is called AES.

B~ W

4.3
Multiplication table for GF(23), P(x) = x3 +x+ 1
X 0 1 X x+1 X2 P2 +1 P4+x 4x+1
0 0 0 0 0 0 0 0 0
1|0 1 x x+1 x? P+l P4x Pxtl
X 0 X X2 X +x x+1 1 PHx+l 241
x+1 |0 x+1 24x 241 4x+1 x* 1 X
x> 0 x2 x+1 24+x+1 2+x X 241 1
2+1 |0 2+1 1 X2 X 24x+1 x+1 2 +x
X4x [0 P+x P4x+l 1 P +1 x+1 X X2
4x+10 2 +x+1 x2+1 X 1 2 4x x* x+1

4.5 Multiplication in GF(2%):

LAX)*B(x) = (P + D)3+ + 1) =+ + 2+ 53+ 2+ 1
A(X)*B(x) =x +x*+x3+1

x +1
x4 1x0 44 443 +1
X —|—x2 “+x
X % x4
x* +x +1
X3 —|—x2
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C =x3 4+ x> = A(x) * B(x) mod P(x).

2. AX)*B(x) = (®+ D(x+1) =3 +x+x>+1
C=x+x>+x+1=A(x)*B(x) mod P(x)

The reduction polynomial is used to reduce C(x) in order to reduce the result to
GF (2%). Otherwise, a simple’ multiplication without reduction would yield a result
of a higher degree (e.g., with x*) which would not belong to GF (2*) any more.

4.7
1. By the Extended Euclidean algorithm:

a1 =) Fp+ 1] o) =to—qit) = —q1 = —x°> = x>
x =[x+ D+1 BE) =H-@ph=1-1x=1-x=x*+1
bl =[x+ 1](1)+0

So, A7l =x+1.

Check: x* (x3+1) =x* +x= (x+ 1) +xmod P(x) = 1 mod P(x).

2. By the Extended Euclidean algorithm:

Haxtl =P+ x+ 1P +x)+ [ a=to—qit1 = —q1 =x* +x+1
¥+x =2 +x]14[0]

So, A =x24+x+1.
Check: (> +x)(> +x+1)=x*+2° + 22 +x=x* +x = (x+ 1) + x mod
P(x) = 1 mod P(x).

4.9
1. A=01,A(x)=1
A7 (x) =1=01,
A~!(x) is now the input to the affine transformation of Rijndael as described in
Section 4.2.1 of the Rijndael Specifications:
M-A'+v

where M and V are a fixed matrix and vector, respectively.

M-A"'"+V=M-

O == OO O = =
O = — O OO = =
O === == O O

O O O == = = =

eNeoloBoNoBoNel S
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ByteSub(01,,) =7C,
2. A=12,A(x) =x*+x
Apply extended Euclidean algorithm: A~!(x) = x” +x° + x° +x = AA,,.

M-A""+V=M-

— O = O = O =0
+

O == OO O = =
|

— O = O = O -0
+

O = —O OO = =
Il

—_—— O O = OO ==

Remark: It is (big) coincidence that M - A~! = A~!. This only holds for this spe-
cific value of A1
ByteSub(12,) = C9y,

4.11
]
16 16 16 16
- | 1019161
16 16 16 16

m The ShiftRows operation does not change anything since all bytes of B equal
each other.

m The MixColumn operation is equal for every resultig byte C; and is described by
(01401 4 02+ 03)ex - (16)0x- We have to remind, that all calculations have
to be done in GF(2%), so that (01 401+ 02 +03),.. = (01)4, and hence, all
resulting bytes of C equal to (01)pex - (16)pex = (16)pex =

16 16 16 16
16 16 16 16
16 16 16 16
16 16 16 16

C = MixColumn(B) =

m The first round key consists of 128 ones. So, the output of the first is

16 16 16 16 FF FF FF FF E9 E9 E9 E9
Cox— |16161616 | | FFFFFFFF| _|E9E9E9E9
~ 161616 16 FFFF FFFF |~ | E9 E9 E9 E9

16 16 16 16 FF FF FF FF E9 E9 E9 E9
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4.13

00 44 88 22
11 5599 33
22 66 00 44
3377 1155

AES key =

00 44 88 22
11 5599 33
22 66 00 44
3377 1155

round key ko =

c2 86 0e 2¢
Oa Sf c6 5
de b8 b8 fc
a0 d7 c6 93

round key k| =

17
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77 €9 45 58
c4 cf fac3
b8 66 87 95
05 23 31 20

State after Inverse Byte Substitution (round 9) =

(b5 6f 4b 74 ]
ce 90 3¢ 36
66 de 3f 69

| a5 f4 f7 D3 |

State after Key Addition Layer with k| =

[2d 5f 5¢ b0
3d a0 0b 9e
9557 4f 86
| 3d 75 a5 30

State after Inverse MixColumns Layer =

[2d 5f 5¢ b0 ]
9¢ 3d a0 Ob
41 86955f
| 75 a5 30 3d |

State after Inverse ShiftRows Layer =

[ fa 84 9d fc
df 8b 47 9e
92 dc ad 84
|3/ 2908 8b |

State after Inverse Byte Substitution =

fa c0 15 de
ce de de ad
b0 ba ad c0
Oc 5e 19 de

State after Key Addition Layer with kg =

fa c0 15 de
ce de de ad
b0 ba ad c0
Oc 5e 19 de

AES plaintext =
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4.15

1. Without loss of generality we consider the leftmost MixColumn operation. Let’s
assume the 4 inputs are the byte B, which can have any value from GF (2%). The
MixColumn is now:

o 02030101\ /B
¢ | [oto20301| (B
G| T |oto10203| (B
G 03010102/ \B

We note that the computation of all four output bytes is identical and results in
the same value:

C;i=(01401+02+03)B , i=0,1,2,3
We write the constants 01, 02 and 03 now in their polynomial representation:
Ci=(1+1+x+(x+1)B , i=0,1,2,3

which yields
Ci=1B=B , i=0,1,2,3

2. The four input bytes are represented by 32 bits so that there is a total of 23
different input values. There are exactly 256 of those 32-bit inputs where all
four bytes have the same value, namely (00,00,00,00), (01,01,01,01), ...,
(FF,FF,FF,FF). If the 232 inputs are uniformly distributed (which holds if all
input bytes are random), the probability that the four bytes are identical is, thus:

P(4 identical input bytes) = 256,/2% = 28/232 = 2724 = 1/16777216

3. Let’s first look at the 1st round of AES, cf. Figs. 4.2 and 4.3. The four input bytes
of any of the MixColumn boxes are only identical if the corresponding bytes
prior to the four S-boxes are identical e.g., the values Ag, As, Ajg, and A5 in
Fig. 4.3. However, all bytes A; are computed as the XOR of a plaintext byte with
a key byte. If the key is chosen randomly, the four bytes A; will also take random
values, independently of of the plaintext. Hence, there is the small probability of

724

that any of the MixColumn boxes in the first round will have four identical inputs.
The same argument holds in all subsequent rounds 2,3, ..., n,, cf. Fig. 4.2. The 4
inputs to the MixColumn operation are only identical if the corresponding four
bytes that are inputs to the preceding S-Boxes are identical. Since the S-box
inputs are the result of an XOR operation which involves the subkey of the pre-
ceding round, the S-box inputs are also random. Hence, for all other MixColumn
operations, the probability that all 4 input bytes are identical is also 272%.
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4.17

1. d=01,b=1x(bx" +...+by) =b.
do=by,dy =by,...,d7=Db7.
2. d=02%b=ux(byx"+...4+by) = bx®+bex’ +...+box
¥ =x*4+x° + x4+ 1 mod P(x).
d = bex” + bsx® 4 byx> + [b3 4 by]x* + [by + b7]x> + bix? + [bo + br]x + by
d7 = bg de = bs
ds = by dy =bz+by
diy=by+b7 dy=">b
di=by+b7 dy=0b7

3.d=03xb=(x+1)b=xb+b
Using solutions from above:
d = (be + b7)x” + (bs + be)x® + (bs + bs)x> + (b3 + bs + by)x* + (by + b3 +
b7)x> + (b1 + b2)x® + (bo + by + b7)x + (bo + b7)
d7 =bg+ by de = bs+ bg
ds = by + bs dy =b3+by+ by
dy=by+b3+b7; dy=b1+by
dy=bo+b1+b7 dy=bo+ b7

4.19

RC[8] =7 = (10000000),
RC[9] =x8 =x* +x +x+1—(0001 1011),
RC[10] =x° = x% - x = +x* + x> +x = (00110110),
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Problems of Chapter 5

51

1. ECB

x=01101110111101000110
y=11001111101011000101

2. CBCand IV =11001.

x=0110111011 1101000110
y1=e(x; GIV) = e(01101 & 11001) = e(10100) = 00011
y2=e(x®y1) =e(11011@®00011) = e(11000) = 10010
y3 =e(x3Bys) = (110106 10010) = ¢(01000) = 10000
ya=e(xsBy3) = (001106 10000) = e(10110) = 00111

= y=00011 10010 10000 00111

3. CFB and IV = 11001.

x=0110111011 1101000110
yi=e(IV)@x; =e(11001) 01101 = 11010601101 = 10111
ya=e(y)) ®x;=e(10111)@11011=0111111011= 10100
y3 =e(y2) ®x3=e(10100)@®11010= 00011 11010= 11001
va = e(y3) ®xq=e(11001)&00110=11010400110= 11100
= y=1011110100 11001 11100

4. OFB and IV = 11001.

x=01101110111101000110

s1=e(IV) = e(11001) = 11010
sp =e(s1) =e(11010) = 10110
s3 =e(s2) = e(10110) = 00111
s4 =e(s3) =e(00111) = 01101
=y=1011101101 1110101011

5. CTR and IV = 11001.

yi =5 ®x; =11010©01101 = 10111
Yo =5 ®x =10110® 11011 = 01101
y3=s3@x3 =00111611010= 11101
V4 =54 @Bxs =01101 600110 = 01011
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x=101100011 000
y1 = eIV +0)®x; = e(11001) ®x; = 11010® 01101 = 10111
ya=e(IV+1)®x, = e(11010) ®x, = 10110® 11011 = 01101
y3=e(IV+2)®x3=e(11011) @ x3 = 111104 11010 = 00100
ya=e(IV+3)®xy = e(11100) @ x4 = 10011600110 = 10101
= y=101110110100100 10101

53

The decryption of an "CBC-encrypted” file is defined by x; = dx(y;) ®y;—. Since
you know the key K and the pair (xp,yp) (from the first file), the unknown IV can
easily be obtained by converting the equation:

IV =y_1 =di(y0) ®xo

After that, the second (unidentified) file can easily be decrypted by using the de-
cryption equation mentioned above (with y_; = IV).

5.5

If the same IV is used for the OFB encryption, the confidentiality may be com-
promized. If a plaintext block x; of such a message m is known, the output can be
computed easily from the ciphertext block y; of the message m. This information
then allows the computation of the plaintext block x/]- of any other message m' that
is encrypted using the same IV.

5.7

1.

2. The problem with the scheme is that there are only 256 different inputs FB; to the
AES algorithm. That means there are only 256 different output vectors of length
128bit that form the keystream. To make things worse, the cipher output will run
into a cycle quickly. Let’s denote the sequence of feedback bytes by F B, FB,, ...
As soon as a feedback byte FB; is generated that is equal to an earlier one FB;,
i.e., i < j, the sequence

FBi,FBi\,...,FBj=FB; FB;\,,...,FBj = FB;,FBj|,...

repeats periodically. Since there are only 256 different values for F'B, the maxi-
mum sequence length is 256. Since each value is associated with a 128 (16 byte)
AES output, the keystream sequence s; has a maximum cycle length of:

128 x 16 = 2048byte = 2kbyte.

After this, the stream cipher output must repeat (and odds are that the cycle lenght
is much shorter). Thus, if an attacker has to know at most 2kB of plaintext in
order to recover the entire stream cipher output with which he can decrypt all
other ciphertext.



Solutions to Homework Problems 23

3. No, we still only generate a maximum of 256 keystream words of length 16 byte.

Remark: In the chapter on hash functions we will learn about the birthday paradox.
This is applicable here too and tells us that the expected length of the sequence is in
fact approximately v/256 = 16.

5.9
The counter has to encrypt 1 TB of data without repeating itself. This yields an IV
of maximum size of 91 = 128 — 36 bits.

511

A missing or deleted bit in y; affects the i-th feedback bit which enters the shift
register of size of k bit. After K + 1 steps, the affected feedback bit leaves the shift
register. As a consequence, all subsequent decryptions (i.e., decryptions of y;iy4...)
are again correct.

513

L y=ei (e (e, ()
x=e e (eg )

2. Compared to a triple encryption, the EDE mode does not increase the security
level. However, it allows for backward compatibility if we use the same key for
encryption and decryption.

3. Brute-force complexity: (2¥)3 = (280)3 = 2240
MitM memory: 2€ = 280
MitM computationaly complexity: (2€)? = (280)2 = 2160
= effective key length: 160
Even with todays’ computers, such an attack is infeasible.

4. Tn general: 2/"*~"'" with ¢ pairs of plain and ciphertext and / as the number of
encryptions.
= check fort =1,2,3,...
= For t = 4 we have a probability for a wrong key of 2380-464 —2-16

5.15

We can use the following formula to estimate the success probabilities:
Pr(K' #K) =21,

with / being the number of encryptions, k the key length, 7 the number of available

plaintext/ciphertext blocks and n as the block length.

1. The desired error probability is given by Pr(K’ # K) < 27%0: Using above for-
mula, we find that it is fulfilled for ¢ > 5.
2. Re-ordering the formula to

_ logy(Pr(K' #K))+tn
N /

k
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and using / =2, n = 80 and ¢ = 5, leads to a maximum key length of k = 195
bits.

3. With the parameters available, we get the expression rn = 512, which is equal to
kI = 512. Hence, the correct keys ki,k, cannot uniquely be determined, which
follows from the error probability of Pr(K’ # K) = 1.

5.17 Notation: DESAx, (x) = DES(x) ki =y
input: 2 pairs of known plaintext/ciphertext (x1,y;), (x2,y2) such that:

x——=| DES Y- y

DESAk,kl(xi)ZYi 5 i:1,2

y1®y2 = (DESk(x1) ® k1) © (DESi(x2) ® k1)
= DESi(x1) ® DESi(x2) (14.2)
=y @Y (14.3)

Key Search Algorithm (2 steps):

1. Find Key k:

DESy (x1) ® DES,(x2) 2 yi®y, i=0,1,2,... [works because of Equa-
tion (14.2)]

2. Find Key k;:
¥y = DESi(x1) [use key k from Step 1]
ki =y, ®y
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Problems of Chapter 6

6.1 From a theoretical point of view, public key cryptography can be used as a
replacement for symmetric cryptography. However, in practical applications, sym-
metric ciphers tend to be approximately 1000 times faster than public key schemes.
Hence, symmetric ciphers are used when it comes to bulk data encryption.

6.3 If every pair out of n = 120 employees requires a distinct key, we need in sum

n—1 :120.120—1

n- =17140
key pairs. Remark that each of these key pairs have to be exchanged in a secure way
(over a secure channel)!

6.5

1. ged(7469,2464) = 77
2. ged(4001,2689) = 1
3. ged(333200,286875) = 425

6.7

1. ged(26,7)=1
g1=3,q¢p=1,qg3=2
h=-3,3=4,14,=-—11
al=tsmodm=—11 mod 26 =15

2. gc¢d(999,19)=1
qg1=52,¢2=1,g3=1,q4=2,95 =1
th =—52,t3 =53,1t4 = —105, t5s = 263, t, = —368
a1 =1 mod m = —368 mod 999 = 631

6.9

L o(p)=p'-p")=p—1

2. 0(p-q)=(p—1)-(g—1)
#(15) = ¢(3-5)=2-4=8
$(26)=¢(2-13)=1-12=12

6.11

1. m=6,0(6)=03—-1)-2—1)=2;
Euler’s Theorem: a? = 1 mod 6, if gcd(a,6) = 1

02 =0 mod 6;
12=1 mod 6;
22 =4 mod 6;

32=9=3mod 6;
42=16=4 mod 6;
52=25=1mod 6
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2.m=9;9(9)=3>-31=9-3=¢;
Euler’s Theorem: a® = 1 mod 9, if gcd(a,9) = 1
0°=0mod9;
1°=1mod 9;
20=64=1mod9;
36=(3%2=0>=0mod 9;
4°=(2°2=12=1mod 9;

50=1mod9;
60=20.3=1.0=0mod 9;
7 =1 mod 9;
80=1mod 9
6.13
Euclid’s Algorithm:
Tteration 2: ro = q1r1 + 12 Iy =rg—q1r1 = Sa2rg +1r
Iteration 3: r| = gorp + 13 r3=[—q] ro+[1+qq2] - r1 = s3rg+ 137y

= from (1),2:s2=1; s3=—¢q2  (3)

h=—qi=1+q4q 4
The iteration formula for the Euclidean Algorithm gives:
& n@sw-—qn
6) 532 51— 52 Dy -2 2 e
(:6>)sl =0 (:5>)So =1
D nZn-qn = —q1
® nZn-qmn =2 +4q192 & 1+q192

(:8>)t1:1 (:7>)l‘0:0

Problems of Chapter 7

71

ey
(@)

1. Only e = 31 is a valid public key, because ®(n) = (p—1)(g—1) =40-16 =
640 =27 - 5. Furthermore gcd(e;, ¢ (n)) = 1 has to be fulfilled. Hence, only e; =

49 may be used as public exponent.
2. Kpup = (n,e) = (697,49)
Calculation of d = ¢! mod ¢(n) =49~ mod 640 using EEA:
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640 = 13-49+3
49 =16-3+1
&1=49-16-3
=49 — 16(640 — 13-49)
=209-49 — 16 - 640
= 497! mod 640 = 209.

So, the private key is defined by K,,, = (p,q,d) = (41,17,209).
7.3

1. e=3;y=26
2.d=27;y=14
7.5

1. In this case, a brute-force attack on all possible exponents would be easily feasi-
ble.

2. Wiener’s attack is applicable if d < 1/3 n'/4 1f we ignore the factor of 1/3, d
must have at least 2048 /4 = 512 bits.

3. It holds
e-d=1 mod¢(n)
and thus:
e-d> ¢(n)
from which follows:
d> ¢(n)/e.

In order to get the bit length of a number x we have to compute its binary loga-
rithm: |x| = [log, (x)]. We apply this to both sides of the equation above:

[log, (d)] > [log, (9(n)/e)]
[log,(d)] > [log(¢(n))] — [logy(e)]
|| > |¢(n)| —e|

We now show that |¢(n)| = |n|. It holds

o(n)=(p-1)g—1)=pg—p—q—1=n—p—g—1.

Crucially, n has twice the bit length of p as well as of ¢, i.e., we are subtracting
relatively small numbers from n. Thus, it is almost always the case that n — p —
q — 1 has the same bit length than n itself.

7.7
p=3l,qg=37,e=17,y=2
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m n=31-37=1147
d=17"1=953 mod 1080

m d, =953 =23 mod 30
d,; =953 =17 mod 36

B x,=y% =22 =8 mod 31
xg =y% =27 =18 mod 37

mc,=q ' =37"1=6"1=26mod 31
cg=p ' =31"'=6mod 37

m x = [gcp|xp + [peglag =
[37-26]8 +[31-6]18 =
8440 =721 mod 1147

7.9

Alice Bob
setup: kpr =d; kpup = e
publish e, n
choose random session key kg
Y= e, (kses) = k&,; mod n

ses

kses = dp,,, (y) = y* mod n

Alice completely determines the choice of the session key k.

Note that in practice ks might be much longer than needed for a symmmetric-
key algorithm. For instance, ky.; may have 1024 bits but only 128 actual key bits are
needed. In this case just use the 128 MSB (or LSB) bits are used and the remaining
bits are discarded. Often, it is safe practice to apply a cryptographic hash function
first to ks and then take the MSB or LSB bits.

7.11

1. Encryption equation: y = x* mod n. We cannot solve the equation analytical, be-
cause the exponentiation takes place in a finite ring, where no efficient algorithms
for computing roots is known.

P(n)=p-q
No! The calculation of &(n) presumes the knowledge of p and ¢, which we do
not have.
3. Factorization yields: p =43 and g = 61
@ (n) =42-60=2520
d=e"" mod 2520 = 191

x=1088
7.13
1. A message consists of, let’s say, m pieces of ciphertext yo,y1,...,yn—1. However,

the plaintext space is restricted to 95 possible values and the ciphertext space too.
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That means we only have to test 95 possible plaintext characters to build up a
table containing all possible ciphertext characters:

Test: v = jmodn; j = 32,33,...,126

2. SIMPSONS

3. With OAEP padding a random string seed is used with every encryption. Since
seed has in practice a length of 128—160 bits, there exist many, many different
ciphertexts for a given plaintext.

7.15

The basic idea is to represent the exponent in a radix 2¥ representation. That means
we group k bits of the exponent together. The first step of the algorithm is to pre-
compute a look-up table with the values A = 1, A' = A, A2, ..., AZ~1 Note that
the exponents of the look-up table values represent all possible bit patterns of length
k. The table computation requires 2¥ — 2 multiplications (note that computing A°
and A! is for free). After the look-up table has been computed, the two elementary
operations in the algorithm are now:

m Shift intermediate exponent by k positions to the left by performing k subsequent
squarings (Recall: The standard s-a-m algorithm shifts the exponent only by one
position by performing one squaring per iteration.)

m The exponent has now k trailing zeros at the rightmost bit positions. Fill in the
required bit pattern for the exponent by multiplying the corresponding value from
the look-up table with the intermediate result.

This iteration is only performed I/k times, where [ 4 1 is the bit length of the expo-
nent. Hence, there are only //k multiplications being performed in this part of the
algorithm.

An exact description of the algorithm, which is often referred to as k-ary expo-
nentiation, is given in [189]. Note that the bit length of the exponent in this descrip-
tion is 7 k bits. An example for the case k = 3 is given below.

The complexity of the algorithm for an [ + 1-bit exponent is 2F — 3 multipli-
cations in the precomputation phase, and about / — 1 squarings and /(2% — 1) /2%
multiplications in the main loop.

Example 14.4. The goal is to compute ¢g¢ mod n with k-ary where n = 163, g =12,
k=3,e=14510=2213_,3 = 10010 001,

Precomputation:
go:=1
81 = 12

82:=41" 12=144

83:=g2-12=1728 mod 163 =98

g4:=g3-12=1176 mod 163 = 35

g5 :=g4-12=420 mod 163 =94

86:=g5-12=1128 mod 163 = 150

g7:=86-12=1800 mod 163 =7
Exponentiation:
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Iteration [Exponent (base 2)|Calculation Operation
0 10 Ai=g =144 TLU
la |10 000 A =A% mod 163 = 47 3S5Q
Ib |10010 A:=A g =6768 mod 163 = 85 MUL
2a |10 010 000 A =A% mod 163 = 140 3SQ
2b {10010 001 A:=A-g =1680 mod 163 = 50 MUL

In each iteration, three squarings results in a left shift which makes space for multi-
plying by the appropriate precomputed power of g. For instance, if the next binary
digits to be processed are (010), = (2)19, we take the value g, = g2 from the look-
up-table and multiply it by the intermediate result.

This example emphasizes the impact of the precomputations on the efficiency of
the k-ary algorithm: For the small operand lengths used here, the overall cost for
the exponentiation is worse than for the s-a-m algorithm. This changes a lot for
real-world operands with 1024 or more bits, as the size of the look-up-table only
depends on the window size k, and not on the operand length.

o
7.19
. . . . N 2 2 N
2048-bit RSA :  P(odd number is a prime) ~ In(21024) = o In(2) ~ 0.00228
. . . 2 2
3072-bitRSA :  P(odd number is a prime) ~ In(21536) = 15361n(2) ~0.00188
2 2

~ 0.000141

4096-bit RSA :  P(odd number is a prime) ~ In(220%) = 5043 In(2)

Problems of Chapter 8
8.1
1. Zi:
a (1234
ord(a)|1 442
2. 73
a [123456
ord(a)[13 6362
3. Zi5:

a |1 23456 789101112
0rd(a)|1 12364121243 6 12 2
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8.3
1.
|Z5| = 4
|Z7] =6
|Zi5] = 12
2. yes
3.
7%:2,3
75:3,5
7i5:2,6,7,11
4.
9(4) =2
9(6) =2
0(12) =4
8.5
1. Kpup, =8 Kpupy =32 Kap =78

2. Kpup, =137 Kpupy = 84 Kip =90
3. Kpup, =394 Kpupy =313 Kyp =206

8.7

Both values would yield public keys that would immediately allow to recognize the
private key. If the private key is equal to 1, the public key would be identical to the
primitive element . If an attacker would detect this identity, he would know that
kpr = 1. If the private key is equal to p — 1, the public key would take the value 1
according to Fermat’s Little Theorem. If an attacker notices this, he can deduce that
kpr=p—1.

8.9

1. The order of a = p — 1 is 2, since

d=a=p—1;, d=(p-1) =(-1)>=1

2. The subgroup H,, which is generated by a is defined by H, = {1,p— 1} (or
equally H, = {1,—1}).

3. An attacker could alter the mutually used element a to an element @’ of the pre-
viously mentioned form, so that it generates a subgroup with only two elements.
Hence, the Diffie-Hellman key exchange can only yield in two different key and
the attacker only has two test both possibilities to determine the right key.
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8.11
Alice Oscar Bob
a by a bo
ot = by — = a%=by —2
bo bp al
] B = bp
b‘(l)A — a0 — KAO bZO — qato — KAO bl(l)b’ = 9890 — KBO

bl — a0 — Ko

Oscar shares now a secret key with Alice and Bob. Alice and Bob both don’t
know about it and think they share a key with each other. Oscar can now decrypt,
read, and encrypt any messages between Alice and Bob without them learning about
it if he continues to intercept all encrypted messages.

This is the infamous man-in-the-middle attack. This attack is, in essence, respon-
sible for things such as certificates, public-key infrastructures, etc.

8.13

Compute B: B = a mod p.

Encrypt: (kg,y) = (&' mod p,x- B mod p).
Decrypt: x=y (k%) mod p.

1. (kg,y) = (29,296), x = 33
2. (kg.y) = (125,301), x = 33
3. (kg,y) = (80,174), x = 248
4. (kg,y) = (320,139), x = 248
8.15

Oscar knows x;,, ¥, and n (by just counting the number of ciphertexts). The first step
of a possible attack is to calculate

Kyt =Yn-x "' mod p. (14.4)

Caused by the previously mentioned PRNG, beginning with kys ,—1, ka7, j—1 can eas-
ily calculated recursivley through

kM,j—l = ﬁijfl = ﬁij*f(j) = ﬁij .ﬁ*f(j) = kM,jfl .ﬁ*f(j) mod p (14.5)

where the values of all variables are known. With the knowledge of k, ; for all j,
Oscar is now able to decrypt the whole ciphertext by solving the usual decryption
equation
xj=yjky'; mod p (14.6)
8.17
1. By choosing a different secret exponent i, the ciphertext y of the same plaintext x
is different everytime. Even if a pair of plaintext/ciphertext is compromised, such

a pair will most likely not repeat a second time in a non-deterministic encryption
scheme!
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2.

In general, there are #{2,3,---,p — 2} = p — 3 different valid ciphertexts for a
single plaintext. I.e., we have 464 different possibilities for p = 467.

. The plain RSA cryptosystem is deterministic. A specific plaintext always yields

the same ciphertext assuming the same public parameters.

8.19

1.

2.
3.

x=1{18,24,12,12,4,19,17,8,2},y; = x? mod 29, i.e.,
y=1{27,25,12,12,13,11,17,15,19} = {B,2,M,M,N, L, R,P, T}

d=e"mod p—1=9"" mod 28 =25

e can not be arbitrarily chosen since its inverse must exist, i.e., gcd(e,p— 1) = 1.
Furthermore, an attacker shall not be able to compute the e-th root to reverse the
exponentiation. Thus, e should be large enough.

. No since the decryption key can be computed from the encryption key e and the

prime p!

. Knowing a pair of plaintext and ciphertext does not allow to compute the se-

cret key e or d. The Pohlig-Hellman cipher is resistant against known-plaintext
attacks.

8.21

1.

2.

with kpr = p—1: kpyy = 0P ' mod p = aP~1m4P~1 mod p = ¢® mod p =
1=>k,p=1

(p—1)Ymod p=p>—2p+1modp=1=ord(p—1)=2

Ha:{lap_l}

Problems of Chapter 9
9.1
a=2,b=2

4.23427.22=4.8427-4=324108=140=4# 0 mod 17
93 174+1-2V17~9,75<19< 17+ 14217~ 26,25 q.e.d.
9.5

1.

2.

3.

The points of E are
{(0,3),(0,4),(2,3),(2,4),(4,1),(4,6),(5,3),(5.4)}
The group order is given by

#G =#{0,(0,3),(0,4),(2,3),(2,4),(4,1),(4,6),(5,3),(5,4)} =9

Compute all multiples of a:
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0-aa =0
l-a=(0,3)
2-a = (2,3)
3-a = (5,4)
4.a = (4,6)
5-a = (4,1)
6-a = (53)
700 = (2,4)
8-a = (0,4)
9-00 =0=0-«

Solutions to Homework Problems

= ord(a) =9 =#G

= o is primitive since it generates the group!

9.7 The element order divides the group order = possible orders of « are 1, 2,
4, 8, 16. We can exclude ord(@)= 1 since a # . Thus, we only need to check
if ord(a)= 2, ord(a)= 4, and ord(a)= 8 to see if o has the order 2, 4, 8, or 16. If
20=0 orda = O or8a = O, then ord(cx)=2 or 4, 8, respectively, else ord(x)= 16.
Thus, the computation involves at most 3 point doublings.

9.9

1. Solution with help of a table:

P +9+1mod 11

i [ mod 11
0 0
1 1
2 4
3 9
4 5
5 3
6 3
7 5
8 9
9 4
10 1

Points on E are E = {(0,1),(0,10), (1
Thus, the order of the curve is given by ord

2. 2P=(2,4)+(2,4):

1

0
5
0
2
6
7
0
2
8
2

,0),(2,4),(2,7),(3,0),(7,0), 6}
(E) =38
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3.2249 o
A="""7-10-8'=10.7=4
2.4
=42-2-2=1
y3=42-1)—4=0
2P =(1,0)
3P=(1,0)+(2,4):
4-0
A=——=4
21

9.11

1. 9-P=(1001)P = (2-(2-(2-P))) + P = (4,1
2. 20-P = (10100p)P = (2-(2-(2-(2-P) +P))) = (19,13)

9.13
K=aB=6-B=2(2B+B)

2B = (x37y3) xl—X2—5y1 y2=9

s=0Bx2+a)y;'=(3-25+1)(2:9)'=76-18""mod 11

s=10- 8—80 3m0d11

x=s2—x1—x=32-10=—-1=10mod 11

yi=s(x;—x3)—y1=3(5-10)—9=—-15—-9=—-24=9 mod 11
= (10,9)

3B=2B+B= (xg,yg) cx1 =10, =5,y1=9,59,=9
5= (yz—yl)(xz—xl)*‘ =0 mod 11
=0- x=—-15=7mod 11

/

A3 =

yg:s(xl—x3) yi=-y1=—-9=2mod 11

3B=(7,2)

6B=2-3B= (x’3/,y3) X1=x=T,y1=y,=2
s=0Bx+a)y,'=(3-499+1)-47'=54"1=5.3=15=4mod 11
X=s—x1—x=4>-14=16—14=2mod 11

y/3’=s(x1—x3)—y1:4(7—2)—2220—2:1857m0d11
6BZ(2,7)$KAB:2

9.15

A brute-force attack on a 128-bit key currently is computitional infeasible!

In this context, a much more efficient attack is to make use of the correlation be-
tween the x— and y— coordinate of a point. Since it is known that there is an inverse
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for every point P = (x,y) with —P = (x,—y), it would be the easiest approach to
test all 2% possible x—coordinates by solving the curve equation. The effective key
length is then reduced to 65 bits, which may be insufficient in a few years (if this
problem has not already been broken by well-funded intelligence services).

Problems of Chapter 10

10.1

1. m If amessage from Alice to Bob is found to be authentic, i.e., in fact originated
from Alice, integrity is automatically assured, since an alteration by Oscar
would make him the originator. However, this can’t be the case if sender au-
thenticity is assured.

m No, a message can still be unaltered but message authenticity is not given.
For instance, Oscar could masquerade as Alice and send a message to Bob
saying that it is from Alice. Although the message ar rives unaltered at Bob’s
(integrity is thus assured) sender authenticity is not given.

2. No, for achieving confidentiality we have to use encryption. However, encrypted
data can be altered during transmission without the receiving (or sending) party
noticing.

10.3

1. ¢(11111) = (271—1)- (41 —1)= 10800
Choose e such that gcd(e,10800) = 1
= e=7
d=e ' =1543 mod 10800
1234154 = 8182 mod 11111

2. The signature computation gets very efficient for small exponents e.
10.5

1. 6292° = x mod n = valid signature
2. 4768 # x mod n = invalid signature
3. 1424° = x mod n = valid signature

10.7

Oscar receives the message, alters it and signs it with his own private key a’. Then
he sends the new message together with the signature and the alleged public key
(n',€') of Alice (which is instead the one of Oscar).

10.9
1. sigk,, (x) =x! modn=y

?
veeruh (x’y) : X = ye mod n
Assume that d has [ bits.
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Using the square & multiply algorithm, the average signing will take:
#® ~ [ squarings + % -/ multiplications = % -1
Since b = 2941 = 65537 = 1000000000000001,, the average verification takes:

#® = 16 squarings + 1 multiplication = 17

2. Signing takes longer than verification.
l[bits]| Tonit |n| Tunis | T (sig) ‘ T (ver) ‘

operation

3. 1024 {100 ns|32[102.4 us|{157.3 ms|1.741 ms
2048 |100 ns|64|409.6 us| 1.258 s |6.963 ms
4. T(1®) = (%2)2 . }; time for one multiplication modulo p
. 3 Tiunir
T ==l —=0.
(sig) 2 operation 055
Tunit l 2
operation (32) it
F> [Hz]
unit
i) 50.33 MHz
if) 402.6 MHz
10.11
1. o =3'9=25mod 31
a. y=17,6 =5
t=BY- ¥ =6"7-17°=26-26 =25 mod 31 =t = a* = ver(x,(7,8)) = 1
(valid)
b. y=13,0=15
=By’ =63.135=6-30=25mod 31 = 1 = a* = ver(x,(7,8)) = 1
(valid)

2. With p, a,d and thus B fixed, one can construct @(p — 1) different ephemeral
keys to compute the signature a message x. Here we have ¢(31—1) = ¢(30) =8
possible kg yielding 8 different signatures for a message x.
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10.13

s1= (x1 —dr)kg mod p—1
52 = (xz—dr)kEz1 (xo —dr) (kg +1) ' mod p—1
s1 _ (x1—dr) (kg +1)

=== mod p—1
52 (Xz—d}’)kEl p

<:>kE1 = W IIlOdp—l

sz(xlfdr)_
—s1k
=d= wmodp—l
r

10.15 Similarly to the attack on Elgamal, an attacker can use following system of
equations

s1 = (SHA(x1) +dr)k;' mod ¢
52 = (SHA(x2) +dr)k;' mod ¢

for known s, s, x1, and x, to first compute the ephemeral key kg and then the
private key d:

s1—s2 = kg (SHA(x1) — SHA(x2)) mod ¢
SHA —SHA
Skp = (1) (x2) mod g
51 —82
N kE - SHA(xl)

r

=d = mod g

10.17 If an attacker knows two consecutive signatures, he knows the values of
X1,81,71,X2,52,F2, and he knows the signature equations:

si=(x1—d-r)-kg'
SQZ()Cz—d'rz) (3 )
We now multiply both equations by the inverses, i.e.,

kE-slz(xl—d-rl)
3-kE-s2:(x2—d-r2)

and obtain a system with two equations and two unknowns kg and d which we can
solve for d.
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Problems of Chapter 11

11.1
X X X
Y Y Y
H_,— ¢ H,_, > C H;_, > C
/
- L.
Y Y Y
H; H, H;
() e(Hi—1,%) ®x; ®) e(Hio1,x ®Hi-1) ©x;® () e(Hi—1,%) ®x; @ Hiy
Hi
Hi—l Hi—l
X
Y Y
Y
X —» e X - e
H,_, >
y Y Y
D D= P
Y Y Y
H H. H,

(d) e(Hi—1,x; ®Hi_1) ®x; (e e(xj,Hi—1)®Hi—1 () e(x;,x; ®Hi_1) ®x; ®H;_

39
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Hl—l Hl—l
- X,
Y Y
% >~ € Xi - e |
Y
H_, S e
\ Y
oD M e
- NVa Y
D=
Y Y Y
(@) e(xi,Hi_1)©x;©Hi—1  (h) e(x;,x; ®H;_1) ©H; () e(xi © Hi—1,x;) ®x;
Hi—l
X
H;_,
\
. R T
Y H,_, - e i o €
X b e
‘ 1 -
D= = T
Y \ Y
H; H, H;
() e(xi ©Hi—1,Hi-1)©Hi—1 () e(xi ®Hi—1,x;)®Hi—1 (1) e(x;®H;_1,H;_1) Dx;
11.3
. _ N 1
Birthday attack: k= /n-m-1=

n|e=05 £=0.
20413.6-10° 1.4-10°
212811.5.10 6.0- 10'8
216011.5.1024 3.9.10%3

number of messages after which probability for collision is €
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11.5

1.

m Breaking the one-way property of a hash function would yield the desired
passwords.

m Finding second preimages works only when the attacker is already in posses-
sion of an existing password and hash value.

m A collision of two (arbitrary) hash values (and passwords) will not yield an
existing password.

. Introducing a salt provides security against detecting similar passwords. Le., if

two or more passwords are the same, the hash values of such are similar, too.
Hence, appending a (different) random value salt to each password prevents from
a deterministic relationsship between passwords and their respective hashes. The
above mentioned attacks are not affected by a salt.

. Since the last property means a strong collision resistance is not required for this

specific application, 80-bit hashes are sufficient.

11.7

1.

128 bits

2. If ¢ = 0, both halfs of the output compute exactly the same 64 bits value. Hence,

W

even though yy has 128 bits, it only has an entropy of 64 bits. You, as an attacker,
simply provide (Ho 1, Ho g) and some start value for x; (e..g., 64 zeros) as input to
the hash function. You now search through possible passwords by incrementing
x;. This way, you will generate pseudo-random outputs y. Even though there is a
chance you will not generate yy at the output, the likelihood is small. Note that
you can also try values x; which have more than 64 bits by iterating the hash
function.

. A second-preimage attack
. When ¢ # 0 both halfs of the output will almost never be the same. So, the entropy

of the output grows to (round about) 128 bits which makes a second-preimage
attack computational infeasible.

119

1.

A =T +T = Hy+ X}

Al =T+ T = Hy + ZPN(Ey) + Ch(Ey, Fo, Go) + Ko + Wo + Z12% (40) +

Maj(Ag,By,Co) = Ko+ Wy = 428A2F98,,.. Hy = Gy = 00000000, G| = Fy =
000000000, Fi = Eg = 00000000, Ey = Do + Ty = Do + Ho + X\ (Eg) +
Ch(Ey, Fy,Go) + Ko + Wy = K1 + W) = 428A2F98;,.. D1 = Cp = 00000000,
Ci = By = 000000000, B = Ag = 00000000},

38} (Ey) + Ch(Eo, Fo, Go) + Ko + Wo + £ (49) +
Maj(Ag,By,Co) = Ko+ Wy = 428A2F 99, Hy = Gy = 00000000, G| = Fy =
000000004, Fi = Eg = 00000000, E; = Do+ T} = Do+ Ho + X\ (Eo) +
Ch(Ey, Fy,Go) + Ko + Wy = K1 + W) = 42842F99;,.. D1 = Cp = 00000000,
Ci = By = 000000000, B = Ag = 00000000},

11.11 Note that the input message is processed in chunks of 7 bits. From Table 11.3
we see that r = 1344 for 256 output bits, and for the 384 output bits variant it
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holds that r = 1088. Thus, the latter implementation processes fewer input bits ev-
ery time Keccak-f is computed. Hence, we need more evocations of Keccak-f in
order to process the same number of message bits. As a result, the second imple-
mentation is by a factor of 1088/1344 ~ 0.81 slower, resulting in a throughput of
about 97 MBytes/s.

11.13

1. There are only two bit permutations. Either input bit 1 is connected to output bit
1 and input bit 2 to output bit 2, or the bits are crossed, i.e., input 1 is connected
to output 2 and vice versa.

2. There are, of course, 22 = 4 different inputs and outputs, namely (00,01, 10,11).
We can count the permutations as follows: The first input 00 can be mapped to 4
different output values. One has to pick one of those output values. The second
input value can be mapped to 3 possible output values (one output value was
previously assigned to the first input value). For the third input value, there are
only 2 output values to choose from, and the fourth input value has to be assigned
to the one remaining output value. Thus, in total there are

4.3.2.1=41=24

possible permutations. Here is the table:

Table 14.1 All permutations tables for a 2-bit permutation function

Input|P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21|P22|P23|P24

00 |00[00{00{00|00|00|0O1|0O1|O1| O1| O1| O1| 10| 10| 10{ 10| 10| 10 11| 11| 11f 11} 11| 11
01 |01|01{10{10{11)11|00|00(10f 10| 11| 11| 00| 00| O1| O1f 11| 11| 00| 00| O1| O1| 10| 10
10 |10|11(01{11{01|10|{10|11|00( 11| OO| 10| O1f 11} 00| 11f 00| O1| O1| 10| 00| 10{ 00| O1
11 |11|10(11{01{10|01|11|10(11| OO| 10| OO| 11| O1} 11| 0O O1| OO 10| O1| 10| 00| O1] 0O

3. Permutation P1 and P3 of f are identical to the two bit permuations.
4. There are 2¢! permutation functions and only d! bit permutations

11.15

1. Of course, there are 5 X 5 = 25 bits with the value one. They form what is called
the first slice of the state in the figure.

2. All bits have the value 0 except the 25 bits in the second slice, i.e., the bits
Alx,y,1]=1.
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Problems of Chapter 12

12.1

1. We use the Gaussian algorithm (mod 7) to solve the linear equation system.

402)4 1041 1041 1041 100(1
05451 —-015(1 )] —=[015[1]—=(0151]—=1{010]1
612|0 612|0 016]|1 001|0 001|0
Therefore,s = [ 1 | is a solution.
0
3. If the error vector is known, the equation can be rearranged to
402 6 402 6
054)|-s+e=[3] & (054 -s=]|3]—e
612 2 612 2
402 6
& |054)-s=|(2
612 2
We solve this, as before, with a Gaussian elimination.
4026 104|5 104|5 104|5 100]1
0542 —-(0156 ] —[015[6] =10156]—1{010]1
6122 612(2 016]|0 001(1 0011
Therefore,s = | 1 | is a solution.
12.3

1. We calculate d(x) as

d(x) = a(x)-b(x)+ c(x)
= (3x° +4x% +x+6)(4x’ + 4> +5x +6) +x° + 5 +3
= 12x% 4+ 12x° + 15x* + 18x° + 16x° + 16x* 42027 + 2447
+4x* 40 4 507 + 6+ 24x° +24x7 +30x + 36 +x° + 5% 43
5044 2% +x+4
5% +48 + 2%+ x+4
=4 +4x% +x+4

2. We calculate d(x) as
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d(x) = a(x)-b(x)+ c(x)
= (3% + 4% +x+6) (4 +4x* +5x 4+ 6) + 7 + 5% 43
= 12x% 41227 + 15x* + 18x° 4 1607 + 16x* 4 200> + 247
4+ 4x* 4+ 4x3 4 507 + 6+ 24x° +24x7 +30x + 36 + x> + 562 43
=xX0t+60+ 2+ + 3% +3x+6
X2 —bx+ -2+ +3x>+3x+6
X423+ 8x+4

12.5

t(x) = (48x° + 16x* + 50x +51) (x +x* + 60) + x> + 60

= 48x° 4 64x° + 66x* +2981x> 4+ 1012x% + 3000x + 3120

= 48x5 +3x° + 5x* +53x° +36x° + 11x+9

=53x° +49x° + 8x+4

2. We encode 71 = 30x% + 30x + 30 and choose 7(x) = 1, equx = 60x, €5y = x> and

calculate
Caux(x) = (482 +16x% 4+ 50x 4 51) - 1 4 60x = 48x> 4 16x° +49x + 51
Csg(X) = (53%° +49x% + 8x+4) - 1 + x>+ 30x% 4+ 30x + 30 = 53x° + 19x? + 38x + 34

3. We compute

m’ (x) = 53x° + 19x% + 38x + 34 — (48x> 4 16x> +49x+ 51)(x* + x> + 60)
= 1320+ 58 + 57x* + x> +45x% + 26x 4 24
= +32x% +29x + 28

which we decode tom = (0,1, 1,1).

12.7 To determine the generator matrix G from the parity check matrix H, we
construct a linear equation system as in Example 12.6. We know that the first four
bits of our codewords consist of the message m and the last three bits belong to
the redundancy r. Moreover, multiplying a valid codeword ¢ with the parity check
matrix H results in an all-zero vector.
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mi

myp

1110100 m3

He=[1011010 | [ m |20 (14.7)

1101001 r

)

r3

We can rewrite this equation to

my + my + m3 + = mod 2
my + mz + my + =0 mod2
my + my + my +r3=0 mod?2

and reorganize the equations to

rr =m;+my+msz mod?2

rn=m;+m3+myg mod?2
r3s =mp+my+my mod?2.

Given these equations, we can easily construct our generator matrix G which is

1000111
0100101
0010110
0001011

G=

12.9 To determine the messages mj,my,m3, and my, Bob first multiplies all four
received codewords with the parity check matrix H to obtain the four syndromes
51,852,853, and S4.

1
0
0111100 0 0
sT=H./T=[1101010 ol=(o
1011001 0 0
1
1
1
0
0111100 1 1
ss =H-dJ =[1101010 1[=1(o0
1011001 1 1
0
0
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1

0
0111100 0 1
ss=H-df=[(1101010 ol=1(1
1011001 1 1

0

0

1

0
0111100 0 0
sk=H-JdI'=[1101010 1[=1(o0
1011001 1 0

0

0

Given the four syndromes, Bob detects that the codewords ¢} and ¢y contain errors
that need to be corrected. Using the look-up table from Example 12.7, he can easily
determine the error vectors, e.g.,

e2=(0010000)

and
6‘3:(0001000).

To this end, the corrected codewords are

c1=(1000011) c2=(1001100)
c3=(1001100) cs=(1001100)

which results in the four messages

m=(1000) my=(1001)
m3=(1001) my=(1001).

The corresponding characters for (m|my) and (m3|my4) are E and U, respectively.

12.11 First, compute the intermediate value u by

1000000

0001000

0000010
u=c-P'=(1110101)-10100000 [=(1011011).

0000001

0000100

0010000

Second, we compute the syndrome s’ by multiplying H with u resulting in



Solutions to Homework Problems 47

1011100
s=H-u"=[1101010|-(1011011)" =
1110001 1

Third, given the syndrome s’ and the parity check matrix H, we can determine the
permuted error vector ¢’ by identifying the column of H that matches s'. In our
case, this is the first column which leaves us with ¢/ = ( 1000000 ) Fourth, we
remove the error from u to get an error-free vector ii:

i=u+e=(0011011)

Fifth, we can extract the first four bits to obtain v= (0 0 1 1). Sixth, we compute
our message m by

1111
0110
0001
1011

m=v-§'=(0011)- =(1010)

which is the message generated by Alice.
12.13

1. The message length is 8 x 10007 bits. Thus, the length of the public key calculates
as 2n% = 2% (8% 1000%)> = 128 TB.

2. SHA-256 has an output length of 256 bits. Hence, the public key length for the
hashed message is 2n”> = 2 % 2562 bits = 131072 bits.

3. A new key is required for every signature generation. Thus, the total size will be
356 131072 bits = 46661632 bits ~ 5.8 MB.

12.15 To sign a message of length n =9 Bits, we need a checksum that can handle
values from 0 to [//w]-(2¥ —1) =21. Thus, we need we need / = [n/w] = 3 blocks
for the message and [[log2(21)]/w] = 2 blocks for the checksum. Thus, the private
key is k,, = (184,245,20,60,311). To generate the public key, we need to apply
f(x), 2" — 1 times to each private key block:

Step Chain0 Chain1l Chain2 Chain3 Chain4

0 184 245 20 60 311
1 130 238 400 23 142
2 37 434 57 18 235
3 347 308 183 324 37
4 324 329 274 221 347
5 221 420 470 296 324
6 296 105 148 235 221
7 235 294 442 37 296
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Hence, the public key is k., = (235,294,442,37,296). To generate the signa-

ture, we need to split m into base-w blocks: m = 101|110|100 = 5|6[4. Then, we
need to compute the checksum ¢ =7 —5+7 —6+7 —4 = 6 and convert it to base-
w representation ¢ = 000|110 = 0|6. From here, we can use our calculations from
above to read the signature sig = (221, 105,274,60,221). The validity of the signa-
ture follow directly from the table, since completing the hash chain for each block
will result in the public key.

12.17 For the verification, the receiver needs to perform the following operations:

Complete the hash-chains of the W-OTS signature to receive Y.

Compress Y using /(x) to obtain vo[0]'.

Use the authentication path to compute the root node of the tree: v{[0] =
h(vo[O]',vo[1]), v2[0]' = A(v1 (0], vi [1]), v3[0]" = A(v2[0), v2[1]), ki, = H(v3[O], v [1]).
Finally, the receiver must compare k;mb and k. Only if these values are equal,

the signature is valid.

For Y3, the authentication path is (vo[9],v1[5],v2[3],v3[0]). For the verification,

the receiver needs to perform the following operations:

Complete the hash-chains of the W-OTS signature to receive Yg.

Compress Y using /(x) to obtain vy[8]'.

Use the authentication path to compute the root node of the tree: vi[4] =
h(vo[8]',vo[91), va[2]' = h(vi[4]',v1[5]), va[1) = h(v2[2]',v2[3]), K,y = (v3[0], v3[1]").
Finally, the receiver must compare k;mb and k. Only if these values are equal,

the signature is valid.

12.19 First, we need to generate the binary tree. Therefore, we need to compute the
intermediate nodes of the hash tree:

1.

Tree Level 1:

m Leaf Nodes 0 and 1: v{[0] = f(411 4 245) = 240
m Leaf Nodes 2 and 3: vi[1] = f(44+192) =4
m Leaf Nodes 4 and 5: vi[2] = f(376+199) = 314
m Leaf Nodes 6 and 7: v{[3] = f(418+53) =370

. Tree Level 2:

m Nodes 0 and 1: v;[0] = f(240+4) =316
m Nodes 2 and 3: v[1] = f(3144370) = 68

Tree Level 3:
m Nodes 0 and 1: v3[0] = (3164 68) = 128

The final signature is sig = (s = 4,sigors = (72,300,220,436,52), auth_path =
(44,240,68)). It is important to update the state.
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Problems of Chapter 13

131

1. m Calculate x||h = ek’ll(y).
m Calculate /' = H (k|| x).
m If 2 =/, the message is authentic. If & # #/, either the message or the MAC
(or both) has been altered during transfer.
2. m Calculate x||s = e;}l (y).
m Calculate /' = H(x).
m Verify the signature: very,,, (s, H (x))

13.3

1. ¢;=z;®{x1x2...x5||Hi (x)Ha(x) ... Hp(x) }; i=1,2,....n+m
where H;(x) is the j* bit of the m-bit hash value /(x).
1) Assume x has n bits. With the knowledge of x, Oscar first computes
zi=xiDcy i=12,....n
2) Oscar recomputes H(x) since he knows x.
3) Assume H (x) has m output bits. Oscar computes
Zjtn = Hj(x) ® cjjn; j=12,....m
4) For a different x’, Oscar computes H (x')
5) Oscar then computes

ci=zi®dxl; i=1,2,....n
=2 ®HW):  j=12,...m
2. No. Although Oscar can still recover z1, 23, . . . , 24, he cannot recover the bitstream

portion Z,41,2+42; - - .,Zn+m Which was used for encrypting MAC, (x). Even if
he would know the whole bitstream, he would not be able to compute a valid
MAC;, (x') since he does not know k> .

13.5

1. This attack assumes that Oscar can trick Bob into signing the message x;. This is,
of course, not possible in every situation, but one can imagine scenarios where
Oscar can pose as an innocent party and x; is the message being generated by
Oscar.

Alice Oscar Bob
TN
m=MAC(x1)
<—(x2 ) replace! <—(x1 )

m' = MACk (XZ)
very(m',m) = true

2. For constructing collisions, Oscar must be able to compute about /2" MACs,
where 7 is the output width. Since Oscar does not have the secret key, he has to
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somehow trick Alice and/or Bob into computing MACs for that many messages,
as shown above. Even though it might work for a few messages (cf. above), it can
be very difficult to do it for the large number of messages needed for collision
finding. On the other hand, collisions for hash functions can be constructed by
Oscar himself off-line, with massive computing resources if needed, without the
help of Alice and Bob because these computations are un-keyed.

A 128-bit MAC provides, thus, a security of 2! since collision attacks are not
applicable. A hash function with the same output size offers only a security of
about 264,

13.7

1.

MAC(x) = H(K| %)

X=(X1,.0yXn)
m=h(k||x1,....,xn)

Modification of an attacker:

X0 = (x17"'7-xﬂ7-xn+1)

mo = h(m||xp11)
Recipient:

m = h(kala "'7xn7xn+l)

2. MAC;(x) = H(x|| k) The attcker needs to find a collision for the message in order

to compute a valid MAC:

m = h(x|[k) = h(xo||k)

Problems of Chapter 14

14.1

1.

(1) Session keys are derived by a linear and invertible(!) operation of the previous
session key.

(2) Usage of hash functions, thus a non-linear correlation of the session keys.
(3) Usage of the masterkey and the previous session key for every derivation of
the next session key.

Methods (2) and (3), since the old session keys cannot be extracted from the
recent session key
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3. (1) every session, since PFS is missing
(2) every session using the hacked session key K, and every following session
(3) only the recent session, since the (unknown) masterkey is used for every
furterh key derivation

4. No, since then, all session keys can be calculated!

14.3

The first class of encryptions (between the KDC and a user) should be done using
AES-256. The session between two arbitrary users (the second class) should be
encrypted using PRESENT. Here is the rationale for it:

PRESENT with an 80-bit key does not provide good long-term security, even
though it is currently secure against brute-force attacks, at least considering non-
governmental adversaries. Should an attacker be able to compute a session key via
brute-force attack, which is most likely be possible once quantum computers be-
come available in the future, only the corresponding session will be compromised.
On the other hand, AES-256 appears to provide excellent long-term security (even
against quantum computers) and should be used for as the long-term keys between
the KDC and each user. We need much stronger security here because if it becomes
possible to find a certain Ky gpc, all previous and future communication of the user
U could be eavesdropped.

14.5

Assuming that the hacker obtains the key Kb xpc- he can initially encrypt recent
session data in which the session keys Kj,; are encrypted with K;']) xpc- He will also
be able to decrypt the subsequent keys Klif‘lj(.DC until the attack is detected at time #,.
At this point, new keys are exchanged using a secure channel. Hence, all communi-
cation between #, and 1, may be compromised. Crucially, the attacker is, even with
knowledge of K;']) xpc» Dot able to recover szillmc- Hence, he cannot decrypt mes-
sages prior to time #,. In conclusion, this variant provides Perfect Forward Secrecy.

14.7

1. Once Alice’s KEK ky4 is being compromised, Oscar can compute the session key
kses and, thus, decrypt all messages.
2. The same applies to a compromised KEK kp of Bob.
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1. t = 10°bits/s
storage = ¢ - ¥ = 2h - 10% bits/s = 2 - 3600 - 10° bits/s = 7.2 Gbits = 0.9 GB
Soring several Gbyte can be easily done, e.g., on cheap USB sticks..

2. We compute the number of keys that an attacker can recover in 30 days:

30days 30-24-60

# Keys — -
Y= 70 min 10

=4320

Key derivation period:

2h
TKdev = m =1.67 sec



52 Solutions to Homework Problems

Since hash functions are fast, a key derivation can easily be performed (in soft-
ware) at such a rate.

14.11

m Alice computes:
A =272 =394 mod 467
kao = 0% = 156%?8 = 243 mod 467
m Bob computes:
B =2% =313 mod 467
kgo = O = 15677 = 438 mod 467
m Oscar computes:
0 =29 =156 mod 467
kao = A° = 39416 = 243 mod 467, kgp = B° = 3130 = 438 mod 467,

14.13

1. Alice would detect this forgery because the certificate C(O) will contain the ID
of Oscar and not ID(B). She will, thus, know immediately that this is not Bob’s
certificate.

2. This kind of forgery would be detected by Alice when she verifies the certificate
with the CA’s public key. Since the payload of the certificate (namely the ID) has
been altered, the signature verification will naturally fail.

14.15

The signature of the CA merely covers the public key of a user U, i.e., Kpyp, = A%
Even if Oscar gets access to all the private key of the CA’s signature algorithm,
he still cannot compute the private key of any user (which would require to solve
the discrete logarithm problem). Thus, Oscar can also not calculate the symmetric
session keys, which were used before he obtained the CA’s signature key. How-
ever, from now on he is capable of masquerading as any user and can generate fake
certificates for any user.

14.17
Alice Bob

k Certp
pub
kpub ) kprs Cer Ip =

[(kpuv,IDp), sigcal
check Certg with kpub,CA
choose random k

y=eg,, (k)
‘#ﬁ
k=d, ()
encrypt message Xx:
= AESk (x)

x=AES;'(z)
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14.19 PGP makes use of the so called Web of Trust architecture. In contrast of tree-
based architectures, a WoT only consists of nodes (users) with equal rights, where
each node can certify other nodes. The validity of a certificate is then given through
a Chain of Trust. In principle, Alice trusts certificates that she received from a user
she know, e.g., from Bob. (Ideally, Alice would in fact verify the certificate, e.g., by
checking the certificate’s fingerprint with Bob.) In a Chain of Trust, she also trusts
in the certificates that Bob trusts and so on. The main advantage of this system is
the lack of mutually trusted CA. The drawback, however, is that it must be assured
that all users are honest and don’t accept fake certificates.

14.21

1. m Bob sends a nonce np to Alice (which will be used later in the protocol to

prevent replay attacks).

m Alice signs Bob’s value np together with her own nonce n4 and with Bob’s
identity /Dp. She sends this signature together with n4 as “message” to Bob.

m Now, Bob verifies the signature with Alice’s public key and learns the follow-
ing if the verification is correct. He knows that the message is not a replayed
one since Alice has signed the current nonce np. Moreover, he knows that
Alice is actually authenticating herself towards Bob since IDp was signed.
To confirm to Alice that he has in fact received the information correctly, he
sends a signature over n4 to Alice together with a newly generated random
value nj; and Alice’s identity IDy.

m Alice can now verify the message with Bob’s public key. From that she learns
that the message is actually coming from Bob if the signature checks out. She
also knows that it is not the replay of an older message because it contains her
current nonce n4. Moreover, she knows that Bob wants to authenticate himself
towards Alice since /D4 was signed.

2. The core idea of the attack is that Oscar only forwards the messages he receives
from the two parties. The consequences are interesting: Oscar impersonates Alice
when communicating with Bob, i.e., Bob assumes that Oscar in fact is Alice.
Oscar also impersonates Bob towards Alice, i.e., she thinks that the person she’s
communicating with actually is Bob.

Interleaving attacks are very difficult to prevent because there Oscar does not

manipulate any cryptographic secrets (keys) but merely is in the middle of a

legitimate message exchange between Alice and Bob.

3. The interleaving attack is targeting authentication protocols and leads, thus, to
a violation of (entity) authentication. In contrast, the MITM attack is an attack
against a key exchange and leads to incorrect establishment of keys between
users. The consequences of the MITM attack are, thus, much more far reaching
since incorrect keys can be used by the adversary to break many security services,
including confidentiality and integrity.
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