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2 Solutions to Homework Problems (Odd Numbered Problems)

Problems of Chapter 1

11

1. Letter frequency analysis of the ciphertext:

letter|count freq [%] lettefcount freq [%6]
A 5 0.77 N | 17 2.63
B | 68 10.53 o| 7 1.08
C 5 0.77 P| 30 4.64
D | 23 356 Q| 7 1.08
E 5 0.77 R| 8 13.00
F 1 0.15 S| 17 2.63
G 1 0.15 T| 13 201
H | 23 356 Ul 24 372
| 41 6.35 V| 22 3.41
J 48 7.43 W | 47 7.28
K | 49 7.59 X | 20 3.10
L 8 1.24 Y | 19 2.94
M | 62 9.60 Z| 0 0.00

2. Because the practice of the basic novements of kata is the focus and
mastery of self is the essence of Matsubayashi Ryu karate do, | shall
try to elucidate the novenents of the kata according to ny interpretation
based on forty years of study.

It is not an easy task to explain each novenent and its significance,
and some must remain unexpl ai ned. To give a conpl ete explanation, one
woul d have to be qualified and inspired to such an extent that he could
reach the state of enlightened m nd capabl e of recognizi ng soundl ess

sound and shapel ess shape. | do not deem nyself the final authority,
but nmy experience with kata has left no doubt that the following is
t he proper application and interpretation. | offer ny theories in the

hope that the essence of Ckinawan karate will renmmin intact.
3. Shoshin Nagamine, further readinihe Essence of Okinawan Karate-Do by Shoshin Nagamine,
Tuttle Publishing, 1998.

13
One search engine costs $ 100 including overhead. Thusljidmdbllars buy us 10,000 engines.

1. key tests per second: 50°- 10* = 5. 10'? keys/sec
On average, we have to che(@?’ keys:
(2'2"keys)/(5- 10*%keys/set = 3.40- 10?°sec= 1.08- 10'%years
That is about 1®= 100,000,000 times longer than the age of the universe. Good luck.
2. Leti be the number of Moore iterations needed to bring the seanghdown to 24h:
1.08- 10'%ears 365/2' = 1day
2' =1,08-10'8. 365dayg1day
i =6842
We round this number up to 69 assuming the number of Mooratiters is discreet. Thus, we have
to wait for:
15-69= 1035 years
Note that it is extremely unlikely that Moore’s Law will belichfor such a time period! Thus, a 128
bit key seems impossible to brute-force, even in the fordsleduture.

5

15-29 mod 13=2-3 mod 13= 6 mod 13
2-29 mod 13=2-3 mod 13=6 mod 13

2-3mod 13=2-3 mod 13= 6 mod 13
2.

1.
1.
2.
3.
4, 2-3mod 13=2-3 mod 13= 6 mod 13
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15, 2 and -11 (and 29 and 3 respectively) are representaifdhe same equivalence class modulo 13
and can be used “synonymously”.

1.7
1.
Multiplication table forz,
x|0123
00000
110123
20202
30321
2.
Addition table forZs Multiplication table forZs
+/01234 x|01234
001234 ofoooooO0
11122340 1101234
2123401 202413
3134012 3[(03142
440123 404321
3.
Addition table forZg Multiplication table forZg
+/012345 x|012345
0012345 0{000000
11123450 11012345
2234501 2024024
3345012 3/030303
4450123 41042042
5501234 5054321

4. Elements without a multiplicative inversed are 2 and 0
Elements without a multiplicative inverse #ig are 2, 3, 4 and 0

ORWNPRP R

1.

1. FIRST THE SENTENCE AND THEN THE EVI DENCE SAI D THE QUEEN
2. Charles Lutwidge Dodgson, better known by his pen namead_ €arroll

1.

For all nonzero elements @ exists because 5 is a prime. Hence, all nonzero elementtesien

5 are relatively prime to 5.

13

. X=7%2=49=10 mod 13
. Xx=310_-95=812.9=32.9=81=3 mod 13
. X=T7'0=490=10°0= (-3)%°=(3'0)5=3°=32=9 mod 13

9

. X=9mod 13

. by trial: =11 mod 13
11

a= (x1—X2) *(y1—Yz) modm

b=y —ax; modm

The inverse ofx; — x) must exist modulan, i.e., gcd(x; — x2),m) = 1.
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Problems of Chapter 2

21

1. yi =X +Ki mod 26
X =Y —Ki mod 26
The keystream is a sequence of random integers #gm

2. x1=y91—-Ki="B"-"R'"=1-17=-16=10 mod 26="K" etc - - -
Decrypted Text: "KASPAR HAUSER”

3. He was knifed.

23

We need 128 pairs of plaintext and cipherteixs (i.e., 16 byte) in order to determine the kayis being
computed by

Ss=x®y; i=12,---,128.

2.5
D
\— | J
ZI
1 0 0 =7,
1 1 0 =z,
1 1 1 =z,
o] 1 1 =z,
1 0 1 =7,
0 1 0 =27
0 0 1 =Z
1 0 0 =7,=2,
1' Sequence 1:2=00111010011101..
0 1 1 =z,
1 0 1 =2,
0 1 0 =7,
o] 0 1 =2,
1 0 0 =2,
1 1 0 =Z
1 1 1 =Z
0 1 1 =z,=2

2 Sequence2:2=11010011101001..
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3. The two sequences are shifted versions of one another.

2.7
The feedback polynomial from 2.338 4+ x* +x3 + x+ 1.

N

»
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=Z35

So, the resulting first two output bytes g6001000011111133 = (90FF ).
29

1. The attacker needs 512 consecutive plaintext/ciphebtegairsx;, y; to launch a successful attack.
2. a. First, the attacker has to monitor the previously noewtil 512 bit pairs.
b. The attacker calculates= x; +y; mod 2,i=0,1,...,2m—1
c. In order to calculate the (secret) feedback coefficipnt®©scar generates 256 linearly dependent
equations using the relationship between the unknown keyidnd the keystream output defined
by the equation

m-1

Sim= Zopj -s4j mod 255,p; € {0,1};i=0,1,2,...,255
J:

with m= 256.
d. After generating this linear equation system, it can Heesbe.g. using Gaussian Elimination,
revealing the 256 feedback coefficients.
3. The key of this system is represented by the 256 feedbagfkiaents. Since the initial contents of
the LFSR are unalteredly shifted out of the LFSR and XORedh Wit first 256 plaintext bits, it
would be easy to calculate them.

211
XY =xPxDz)=12

W 22=10110 J< 9=0100%

P«+= 15=0111% 5= 31=1111%
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| &8=01000¢ A& 0=0000Q

X =1011001111 01000
yi =01001 11111 00000
z =111111000001000

1. Initialization Vector:(Zp, =1,1,1,1,1,1)

2.
Co 111111\ * /o0
C1 111110 0
C;| |111100 0
C:| |111000] |oO
Ca 110000 0
Cs 100000 1
1
1
_l1o0
~|o
0
0
J 5 A 0 E D J 2 B

—N —N —N —N —~N = —N —N —N —N
3.yi=01001 11111 00000 11010 00100 00011 01001 11100 00001
z=11111 10000 01000 01100 01010 01111 01000 11100 10010

x =10110 01111 01000 10110 01110 01100 00001 00000 10011

. Wombats live in Tasmania.
. Known-plaintext Attack.

[S20 >3

Problems of Chapter 3

31

1. s(x1) Ps(x2) = 1110
S(Xl@XZ) = S(Xz) = 00007é 1110

2. s(x1) P s(x2) = 1001
S(Xl@XZ) = S(Xz) = 10007é 1001

3. s(x1) P s(x2) = 1010
S(x1 P x2) = s(x2) = 1101+~ 1010

33

S(0) =14=1110

$(0)=15=1111

$(0) =10=1010

$(0)= 7 =0111

S(0) = 2 =0010

S(0) =12=1100

S$;(0)= 4 =0100

S(0) =13=1101
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P(S) = D8D8 DBBC
(L1,R;) = 0000 0000D8D8 DBBC (1)

35
¢ IP(X) maps bit 57 to position 33, which is position 1Rg.
e E-Expansion box maps bit position 1 to positions 2 and 48.

e Input to S-Boxes:
$:010000
S$S=8=---=%:000000
$:000001

=- Two S-Boxes get a different input.
P(S) = D058 BOE
(L1,R;) = 8000 0000D058 BOE

1. 2 S-BoxesS; andSg
2. According to design criteria, a minimum of 2 bits/bit.
= 2-2 = 4bits
3. See (1).
4. 6 bits have changed:
3fromS
2 fromS
1 in the left half

3.7

1. K1+i =Kie i fori= 07 1,...7.
2. Following (a), two equations are established:

Citi = Cr6-i
D1.j = D16 fri=0,1,..,7.

These equations yield

Co,j = 0undDg; =0or

Co,j =0undDg; =1or

Co,j = 1 undDg; = 0 oder
Coj=1undDg;=1 frj=12..28

Hence the four weak keys after PC-1 are given by:

Kwi= [0...0 0...0]

Kaz = [0...0 1...1]
Kuz= [1...1 0...0]
Kua = [1...1 1...1]

3. P(randomly chose a weak kiy- 22—:6 =274

3.9
Worst-Case: & keys.
Average: 26/2 = 255 keys.

311

1. Asingle DES engine can compute 1@0° DES encryptions per second. A COPACOBANA machine
can, thus, compute-%-20- 100- 10° = 4.8- 10'° DES encryptions per second. For an average of
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25 encryptions for a successfull brute-force attack on DE3/(2.8- 10'%) ~ 750600 seconds are
required (which approximately is 8.7 days).

. For a successfull average attack in one hod248~ 18 machines are required.

3. The machine performs a brute—force attack. Howeverethreght be more powerful analytical at-

tacks which explore weaknesses of the cipher. Hence, theskaych machine provides only a lower
security threshold.

3.13

N

1. The state of PRESENT after the execution of one rou®30 0000 0000 OOOF. Below you
can find all intermediate values.

Plaintext 0000 0000 0000 0000
Round key BBBB 5555 5555 EEEE
State after KeyAdBBBB 5555 5555 EEEE
State after S-LayeB888 0000 0000 1111
State after P-LayeF000 0000 0000 OOOF

2. The round key for the second rounBFF F777 6AAA AAAA. Below you can find all interme-
diate values.

[Key [BBBB 5555 5555 EEEE FFFF]

Key state after rotation |DFFF F777 6AAA AAAA BDDD
Key state after S-box 7TFFF F777 6AAA AAAA BDDD
Key state after CounterAdqdFFF F777 6AAA AAAA 3DDD
Round key for Round 2 |7FFF F777 6AAA AAAA

Problems of Chapter 4

4.1

1. The successor of the DES, the AES, was chosen by the NISTphpla proceeding. The purpose
of this public contest was to allow broadly evaluation of tia@didates by as many research organi-
sations and institutes as possible.

This strongly contrasts to the development of DES, which evdg performed by IBM and the NSA
firstly keeping details (e.g. the S-boxes) in secret. DESpuddished and standardized in 1975.

2. 1/2/97: Call for algorithms, which could potentially teéo the AES. The selection process was
governed by the NIST. 8/20/98: 15 algorithms were nominassthndidates for the selection process.
9.8.1999: 5 algorithms reach the "finals” (Mars, RC6, Rijeld&erpent, Twofish)

2.10.2000: NIST elects Rijndael to AES.

. Rijndael

Dr. Vincent Rijmen and Dr. Joam Daemen from Belgium

. Rijndael supports blocksizes of 128, 192 and 256 bit, dsase&ey lengths of 128, 192 and 256 bit.
In fact, only the version with 128 bit blocksize (and all thieey lengths) is called AES.

4.3

a s w

Multiplication table forGF (23), P(x) = x® +x+1

X 0 1 X x+1 X2 X¥+1  X4+x X4+x+1
0 0 0 0 0 0 0 0 0
1 0 1 X x+1 X2 X+1  X4+x X4+x+1
X 0 X X2 X2 4+ X x+1 1 X4x+1 ¥2+1
x+1 [0 x+1 X+x  XR+1 R4x+1l X 1 X
XX 0 x X+1 X+x+1 x2+x X X+1 1
X¥+1 |0 X+1 1 X2 X X4x+1 x+1 X2+ X
X4x [0 ¥®4+x xX4+x+1 1 X+1 x+1 X X2
XRA4Ax+10x%+x+1 x¥+1 X 1 X2 +X X2 x+1

4.5 Multiplication in GF(2):
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1 AX)*B(X) = (+1)C+x+1) =X +x*+ X2+ +x2+1
AX)*B(X) =X+ x* +x34+ 1
X +1
X+ x+1x° +x* 3 +1
X2 +X2 4x
X 43 3% +x +1
x4 +x +1
X3 +x2

C = x4 x% = A(X) * B(x) modP(x).
2. AX)*B(X) = (% + 1) (x+1) =+ x+x2+1
C=x3+x%+x+ 1= A(X) * B(x) modP(x)

The reduction polynomial is used to redu@g) in order to reduce the result ®F (24). Otherwise, a
'simple’ multiplication without reduction would yield a salt of a higher degree (e.g., wii) which
would not belong taGF (2*) any more.

4.7
1. By the Extended Euclidean algorithm:
X4 x+1= [X3](X) +x+t(X)=to—qut1 =—q1 = —x3=x3
X =[x+ +1 X)) =ti—qr=1-1xx=1-x3=x3+1
x+1 =[x+1J(1)+0
So, A l=x341.

Check:x* (x3+ 1) = x* + x= (x+ 1) + xmodP(x) = 1 modP(x).
2. By the Extended Euclidean algorithm:
XA x+1= P+ x+1C+X)+ [ tp=to—gats = —q1 = X2 +x+1
X+x =[x +X1+[0]

So, A"l =2+ x+1.
Check:(x® +x) (3 + x4+ 1) = x* + 23 + 2 + x = x* + x = (x+ 1) + xmodP(x) = 1 modP(x).

4.9

1616161
1616161
1616161
1616161

B = ByteSub(A) =

m The ShiftRows operation does not change anything since/tdktof B equal each other.

m The MixComumn operation is equal for every resultig b@t@nd is described by
(01+ 01+ 02+ 03)pex- (16)nex- We have to remind, that all calculations have to be dor@Fif28),
so that(01+4 01+ 02+ 03)pe = (01)nex @and hence, all resulting bytes of C rem&lit)pex =

1616161
. 1616161
C = MixColumn(B) = 16 16 16 1
1616161
m The first round key equals the unmodified AES key. So, the dutithe first is
16 16 16 16 FF FF FF FF E9E9 E9 E9
CoK— 1616161669 FFFFFFFF| |E9E9E9E9
~ | 16 16 16 16 FFFFFFFF| |E9E9E9E9
16 16 16 16 FF FF FF FF E9E9E9 E9

411
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1.d=01,b= 1*(b7X7—|—...+b0) =h.
do=Dbg,dy =by,...d7=Dbs.
2. d=02xb=x(b7x" +...+bg) = b4 bex” + ... + box
X8 =x* +x3+ x+ 1 modP(x).
d = bgx” + bsx® + bgx® + [bs + b7]x* + [b2 + b7]x® + byx? + [bg + b7]x + by
d7 = bg de = bsg
ds = by ds =bz+by
d3=by+b;dy=b;
dy=bg+bydg=Dby

3.d=03xb= (x+1b=xb+b
Using solutions from a) and b):
d= (bg+ b7)X7 + (bs+ b(;)X6 + (bg+ b5)X5 + (bs+bg+ b7)X4 + (b2 +bs+ b7)X3 + (b1 + bz)X2 +
(bo 4 b1+ b7)x+ (bp + b7)
d7 =bg+ by ds = bs+ bg
ds = by +bs dg = bz +bg+ by
d3=by+bs+b;dy=b;+by
d; =bp+by+by do=bg+by

413
1. A=01, AX) =1
Al(x) =1=01,

A~1(x) is now the input to the affine transformation of Rijndael asadided in Subsection 4.2.1 of
the Rijndael Specifications:
M-A14v

whereM andV are a fixed matrix and vector, respectively.

1 1 1 1 0
0 1 1 1 0
0 0 1 0 1
1o w0 ol |1 of |1
M-A"+V=M- 0 + ol=11 + ol =11
0 1 0 1 1
0 1 0 1 1
0 0 0 0 0
ByteSub(03) = 7C;,
2. A=12,, A(X) = X* +x
Apply extended Euclidean algorithiA(x) = x” + x>+ x3 + x = AAy,.
0 1 0 1 1
1 1 1 1 0
0 0 0 0 0
VT ol |1 ol |1
M-A""+V=M- 0 + ol=1o + ol=1o
1 1 1 1 0
0 1 0 1 1
1 0 1 0 1

Remark: It is (big) coincidence thit - A-1 = A1, This only holds for this specific value &f 1.
ByteSub(12) =C9,

4.15

1. RC[8] = x” = (10000000,
2. RC[9| =x® =x*+x3+x+ 1= (0001101},
3. RC[10 =x2 =38 - x=x°+x*+x2+ x = (00110110,
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Problems of Chapter 5

51
Since the records are not related, we typically want to acoaly a single record and not its adjacent
ones. The use of CBC mode is thus not well suited. ECB mostsézbe the best choice.

53
The decryption of an "CBC-encrypted” file is defined Xjy= dk (Vi) ®yi_1. Since you know the key
K and the pair(xo,Yyo) (from the first file), the unknown IV can easily be obtained loyneerting the
equation:

IV =y 1 =dk(¥o) ®Xo

After that, the second (unidentified) file can easily be dptag by using the decryption equation men-
tioned above (witty_; = IV).

55

If the same IV is used for the OFB encryption, the confideityiahay be compromized. If a plaintext
block x; of such a messagais known, the output can be computed easily from the cipkellecky;

of the messagm. This information then allows the computation of the plejt‘ltblockx’j of any other
message that is encrypted using the same IV.

57

2. The problem with the scheme is that there are only 256rdifteinputsFB; to the AES algorithm.
That means there are only 256 different output vectors aftkeri28bit that form the keystream.
To make things worse, the cipher output will run into a cyalécily. Let's denote the sequence of
feedback bytes b¥B1,FBy,... As soon as a feedback bykeB; is generated that is equal to an
earlier oneFB;, i.e.,i < j, the sequence

FBi,FBit1,...,FBj =FB;,FBi;y1,...,FBj = FBj,FBj,1,...

repeats periodically. Since there are only 256 differehtesmforF B, the maximum sequence length
is 256. Since each value is associated with a 128 (16 byte) &\E3ut, the keystream sequerge
has a maximum cycle length of:

128x 16= 2048byte= 2kbyte

After this, the stream cipher output must repeat (and odel¢hat the cycle lenght is much shorter).
Thus, if an attacker has to know at most 2kB of plaintext ineoitd recover the entire stream cipher
output with which he can decrypt all other ciphertext.

3. No, we still only generate a maximum of 256 keystream wofdength 16 byte.

Remark: In the chapter on hash functions we will learn abloetiirthday paradox. This is applicable
here too and tells us that the expected length of the seqieicact approximately/256= 16.

59
The counter has to encrypt 1 TB of data without repeatindfit$his yields an IV of maximum size of
91=128- 36 hits.

511

A missing or deleted bit iny; affects tha-th feedback bit which enters the shift register of size difit.
After k + 1 steps, the affected feedback bit leaves the shift regiigea consequence, all subsequent
decryptions (i.e., decryptions gf, «, ...) are again correct.

5.13

With AES having a block size of 128 bit, a key search for AE®-1@quires only a single pair of
plaintext-ciphertext in order to identify the correct kéry.case of AES-192, given a single pdi;y)

of plaintext and ciphertext, there aré%-128 = 264 possible keys; satisfyingy = e (). In order to
find the correct key with a probability of 50 percent, we requ? pairs of plaintexts and ciphertexts.
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For achieving the same probability with AES-25622plaintexts and ciphertexts are required (which is
very very unlikely)!

515 Y = ex,(ex, (e, (X))

1. Pre—computex, (X') = z‘-(l); i=1,2...,2% and store all pair$;<1), Ki)
2. Decrypizfg =g (gl(Y);a=12,...,2%6b=172...,2%
If a match is found, if there is Zgzt)) = zi(l) test further key pairéx”,y"), (xX”,y"), ..., with the three
keys involved in the match:
If the three keys generate a valid encryption for all pafrest are most likely the correct keys. Other
wise continue with the next pait,, Kp.
| =3;t =3 pairs
2356-364 _ 938 _ 924
=t = 3 pairs(x,y) are sufficient

Problems of Chapter 6

6.1 From a theoretical point of view, public key cryptography ¢e used as a replacement for symmet-
ric cryptography. However, in practical applications, sgatric ciphers tend to be approximately 1000
times faster than public key schemes. Hence, symmetricecipére used when it comes to bulk data
encryption.

6.3 If every pair out ofn = 120 employees requires a distinct key, we need in sum

n-1 120-1

-—— =120

" 2

key pairs. Remark that each of these key pairs have to be egelan a secure way (over a secure

channel)!
6.5

1. gcd74692464) = 77
2. gcd4001,2689 = 1

6.7

1. gcd26,7)=1
Q1:3,CI2:1,CI3:2
th=-3,t3=4,t, =11
al=t,modm= —11 mod 26= 15

2. gcd99919) =1
1=52,b=1,03=1,04=2,05=1
ty— —52,t3 = 53,t; — —105,t5 — 263,tg — —368
al=tg modm= —368 mod 999= 631

=7140

6.9

1 o(p=(p-p°)=p-1

2. 9(p-g)=(p—1)-(q—-1)
®(15) = @(3-5)=2-4=8
®(26) = @(2-13) =1-12=12

6.11

1. m=6;9(6)=(3-1)-(2—-1)=2;
Euler's Theorema? = 1 mod 6, if gcda,6) = 1
0? =0 mod 6;
12 =1 mod 6;
22 =4 mod 6;
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32=9=3mod 6;
42 =16=4 mod 6;
52 =25=1 mod 6

2. m=9; 99 =3-3'=9-3=6;
Euler's Theorema® = 1 mod 9, if gcda,9) = 1
08 =0 mod 9;
15=1 mod 9;
26=64=1mod 9;
3% =(3%)2=0°=0mod 9;
4= (2%2=1°=1mod 9;
56 =1 mod 9;
66=26.35=1.0=0mod 9:;
75=1mod 9;
85 =1 mod 9

6.13
Euclid’s Algorithm:

Iteration 2:rg = qqr1+r2 ro=ro—0iry = Sro+tors
Iteration 3:r; = Qoro+r3 r3=[—02] ro+[1+ a0y - rl=ssro+tsrs

= from (1),2):=1;, ss=-0 (3)
tr=—qutz3=1+q102 (4)
The iteration formula for the Euclidean Algorithm gives:

3
5) £Lso-qs 1
)

3 3
6) 2ZLs-pYs- -

@51:0 (:5>)S()=1

4
7) tZt—aty @ -1

4 4
(8) t3 Py — Ooto @ t1+ g0 @ + 0102

(:8>)t1=1 (:7>>t0:O

Problems of Chapter 7

7.1

13

(1)
)

1. Onlye=231is avalid public key, becausg(n) = (p—1)(q— 1) = 40-16= 640= 2’ .5. Furthermore
gcd(e, @(n)) = 1 has to be fulfilled. Hence, onl = 49 may be used as public exponent.

Calculation ofd = e~ mod ¢@(n) = 49~! mod 640 using EEA:

640= 13-49+3
49=16-3+1
&1=49-16-3
— 49— 16(640— 13- 49)
= 209-49— 16-640
= 4971 mod 640= 209

So, the private key is defined b = (p,q,d) = (41,17,209).
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7.5

1. Inthis case, a brute-force attack on all possible expisneauld be easily feasible.

2. As an absolute minimum, a bit length of 128 bit is recomneehith order to preclude brute-force
attacks on the private exponent. However, the exponentenastbe larger since there exist analytical
attacks which are more powerful. In practice, a lengthdaf least 0.3 times the bit length ofis
recommended, i.e. for RSA-2048 the exponent should at d4sbit.

7.7
p=31,9q=37,e=17,y=2

m n=31.-37=1147
d=17"1=953 mod 1080

m dp=953=23 mod 30
dg =953=17 mod 36

m Xp=y% =222=8mod 31
Xq = Y% = 27 = 18 mod 37

mcp=q1=371=6"1=26mod 31
Cg=p 1=31"1=6mod37

m X = [qCp|Xp+ [PCq] Xg =
[37-26/8+[31-6]18=
8440= 721 mod 1147

7.9
Alice Bob
setupkpr =d; Koup =€
publishe n
choose random session Keys
Y = €y (Kses) = Kges modn

kees = G, (¥) =y modn

Alice completely determines the choice of the sessionksgy

Note that in practicéss might be much longer than needed for a symmmetric-key dlgariFor
instancekses Mmay have 1024 bits but only 128 actual key bits are neededthidrcase just use the 128
MSB (or LSB) bit are used and the remaining bit are discar@¥ten, it is safe practice to apply a
cryptographic hash function first t@es and then take the MSB or LSB bits.

711

1. Encryption equatiory = x* modn. We cannot solve the equation analytical, because the exyien
ation takes place in a finite ring, where no efficient algonigifor computing roots is known.
2.
®(n)=p-q
No! The calculation ofp(n) presumes the knowledge pfandg, which we do not have.
3. Factorization yieldsp = 43 andqg = 61
®(n) =42-60= 2520
d=e 1 mod 2520= 191
x=1088

7.13

1. A message consists of, let's saypieces of ciphertexto, y1, . . ., ym_1. However, the plaintext space
is restricted to 95 possible values and the ciphertext sfmacelrhat means we only have to test 95
possible plaintext characters to build up a table contgialhpossible ciphertext characters:

Test  yi=j®modn; j=3233...,126

2. SIMPSONS
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3. With OAEP padding a random strirsged is used with every encryption. Sinseed has in practice
a length of 128-160 bit, there exist many, many differentieipexts for a given plaintext.

7.15

The basic idea is to represent the exponent in a rdtlire@resentation. That means we gréugits of
the exponent together. The first step of the algorithm is ésqumpute a look-up table with the values
A0 =1, AL =A A? ..., AZ1 Note that the exponents of the look-up table values repteskpossible
bit patterns of lengtt. The table computation require$-2 2 multiplications (note that computin
andAl is for free). After the look-up table has been computed, e ¢lementary operations in the
algorithm are now:

m Shift intermediate exponent lypositions to the left by performinigsubsequent squarings (Recall:
The standard s-a-m algorithm shifts the exponent only bypms#tion by performing one squaring
per iteration.)

m The exponent has nolwtrailing zeros at the rightmost bit positions. Fill in theguéred bit pattern
for the exponent by multiplying the corresponding valuerrihie look-up table with the intermediate
result.

This iteration is only performeld’k times, wheré + 1 is the bit length of the exponent. Hence, there are
only | /k multiplications being performed in this part of the algbnit.

An exact description of the algorithm, which is often reéelto ask-ary exponentiation, is given in
[120]. Note that the bit length of the exponent in this dgst@h ist k bit. An example for the cade= 3
is given below.

The complexity of the algorithm for an+ 1 bit exponent is ®— 3 multiplications in the precompu-
tation phase, and abol#- 1 squarings ant{2¢ — 1) /2¢ multiplications in the main loop.

Example 13.2. The goal is to computg® mod n with k-ary wheren = 163,g= 12,k = 3,e= 1457=
2215 ,3=10010 00%
Precomputation:
go:=1
g1:=12
O2:=01-12=144
03:=0-12=1728 mod 163-= 98
Oa:=03-12=1176 mod 163= 35
O5:=04-12=420 mod 163=94
Os:=05-12=1128 mod 163= 150
07:=0s-12=1800 mod 163=7

Exponentiation:
Iteration Exponent (base 2L alculation Operatior
0 10 A=gy=144 TLU
la [10000 A:= A8 mod 163= 47 35Q
1b |10010 A:=A g, =6768 mod 163= 85|MUL
2a |10 010 000 A:= A% mod 163= 140 3SQ
2b (10010001 A:=A-g; = 1680 mod 163= 50|MUL

In each iteration, three squarings results in a left shifitlWimakes space for multiplying by the appro-
priate precomputed power gf For instance, if the next binary digits to be processed@t6), = (2)1o,
we take the valug, = g2 from the look-up-table and multiply it by the intermediagsult.
This example emphasizes the impact of the precomputatiortisenefficiency of the k-ary algorithm:
For the small operand lengths used here, the overall coshéoexponentiation is worse than for the
s-a-m algorithm. This changes a lot for real-world operamitls 1024 or more bits, as the size of the
look-up-table only depends on the window sizend not on the operand length.

<

Problems of Chapter 8

8.1
1. Zg:
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a |1234
ord(a)1 442

a |123456
ord(a)136362

2. 75:

3. Ziq

a [123456 789101112
ord(@)112364121243 6 12 2

N
<

dD

(72

8.5

1. Kpup, =8 Kpubg =32 Kag =78
2. Kouos =137 Kpups =84 Kag =90
3. Kooy =394 Kpupy =313 Kpg = 206

8.7

Both values would yield public keys that would immediatellpa to recognize the private key. If the
private key is equal to 1, the public key would be identicathte primitive elementr. If an attacker
would detect this identity, he would know the# = 1. If the private key is equal tp— 1, the public key
would take the value 1 according to Fermat'’s Little Theordran attacker notices this, he can deduce
thatkpyr = p—1.

8.9
1. Theorderoh=p—1is 2, since

al=a=p-1; &=(p-1°=(-1°=1

N

. The subgroupl,, which is generated by is defined byH, = {1, p— 1} (or equallyH, = {1, —1}).

3. An attacker could alter the mutually used elema&md an element’ of the previously mentioned
form, so that it generates a subgroup with only two eleméiiésice, the Diffie—Hellman key ex-
change can only yield in two different key and the attackdy dras two test both possibilities to
determine the right key.

8.11
Alice Oscar Bob
b, b
aaA — bA A aao — bO (o)
b b
— «——=  qg¥®=bhg
bgA =38 — Kao bao = &8 — Kao b%B = %% = Kgo

bB = %% = Kgo
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Oscar shares nowsacret key with Alice and Bob. Alice and Bob both don’t know aboutritcethink
they share a key with each other. Oscar can now decrypt,aeddncrypt any messages between Alice
and Bob without them learning about it if he continues toricept all encrypted messages.

This is the infamousnan-in-the-middle attack. This attack is, in essence, responsible for thingl s
as certificates, public-key infrastructures, etc.

8.13

ComputeB: 8 = a9 mod p.
Encrypt:(ke,y) = (a' mod p,x- 8" modp).
Decrypt:x =y (kd)~1 mod p.

1. (ke,y) = (29,296), x = 33

2. (ke,y) = (125301), x = 33

3. (ke,y) = (80,174), x =248

4. (ke,y) = (320,139), x = 248

8.15
Oscar knows, yn andn (by just counting the number of ciphertexts). The first ste@ possible attack
is to calculate

Kv.n = Yn- X3 mod p. (13.3)

Caused by the previously mentioned PRNG, beginning With-1, km.j—1 can easily calculated recur-
sivley through

kw,j—1 =Bt =i~ =gl g~ = ky j_1- B~ mod p (13.4)

where the values of all variables are known. With the knogtedfky j for all j, Oscar is now able to
decrypt the whole ciphertext by solving the usual decrypéiquation

xj =Yyj-ky'; modp (13.5)

8.17

1. By choosing a different secret expongrthe ciphertexy of the same plaintextis different every-
time. Even if a pair of plaintext/ciphertext is compromisedch a pair will most likely not repeat a
second time in a non-deterministic encryption scheme!

2. In general, there are(£,3,--- , p— 2} = p— 3 different valid ciphertexts for a single plaintext. I.e.,
we have 464 different possibilities far= 467.

3. The plain RSA cryptosystem is deterministic. A specifaiptext always yields the same ciphertext
assuming the same public parameters.

Problems of Chapter 9

91 a=2,b=2
4.28427.22=4.8427-4=32+108= 140=4+# 0 mod 17
93 17+1-2V17~9,75<19< 17+ 1+ 217~ 26,25 g.e.d.
9.5
1. The points oE are
{(0,3),(0,4),(2,3),(2,4),(4,1),(4,6).(5,3),(5.4)}
2. The group order is given by

#G =#{0,(0,3),(0,4),(2,3),(2,4),(4,1),(4,6),(5,3),(5,4)} =9
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3. Compute all multiples oft:

0-a=0

1l-a = (0,3)
2-a = (2,3)
3-a = (54
4.0 = (4,6)
5.0 = (4,1)
6-a = (5,3)
7-a = (2,4
8-a = (0,4
9.0 =0=0-0a

= ord(a) =9=4#G
= a is primitive since it generates the group!

9.7
1. 9-P = (1001,)P = (2-(2-(2-P))) + P= (4,10)
2. 20-P = (10100,)P = (2- (2-(2- (2-P) +P))) = (19,13)

9.9
K=aB=6-B=2(2B+B)

2B=(X3,y3) : X1 =X2=5;y1=Y2=9
s=(3¢+a)-y;1=(3-25+1)(2-9)"1=76-18"1 mod 11
s=10-8=80=3 mod 11

X3=S—X1— X =32—10= —-1=10 mod 11
y3=5(x1 —X3) —y1=3(5—10) —9=—-15—9=-24=9 mod 11
2B =(10,9)

3B=2B+B=(x4,y5) :x1=10%=5Yy1=9,y2=9
s=(y2—Y1)(X2—x1)"* =0 mod 11

Xy =0—X —% = —15=7 mod 11

Yo =5(X1—X3) —y1=—y1=—-9=2mod 11
3B=(7,2)

6B=2-3B=(X3,y5) : X1 =X =7,y1=Y2=2
s=(3¢+a)-y;1=(3-49+1)-41=5.41=5.3=15=4mod 11
Xj = — X —X=4%2—-14=16—14=2 mod 11
)/ézs(xl—x3)—y1:4(7—2)—2: 20-2=18=7mod 11

6B = (2,7):>KAB=2

9.11

A brute-force attack on a 128 bit key currently is computitibinfeasible!

In this context, a much more efficient attack is to make usehefdorrelation between the- and
y— coordinate of a point. Since it is known that there is an iseefor every poinP = (x,y) with
—P = (x,—Y), it would be the easiest approach to test &fl fossiblex—coordinates by solving the
curve equation. The effective key length is then reducedtbi§ which may be insufficient in a few
years (if this problem has not already been broken by weltéd intelligence services).

Problems of Chapter 10

101
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1. If a message from Alice to Bob is found to be authentic, irefact originated from Alice, integr ity
is automatically assured, since an alteration by Oscardvmalkehim the originator. However, this
can't be the case if sender authenticity is assured.

2. No, a message can still be unaltered but message authgeistioot given. For instance, Oscar coul d
maskerade as Alice and send a message to Bob saying thabitiMice. Although the message ar
rives unaltered at Bob’s (integrity is thus assured) sead#renticity is not given.

10.3
Threats:

Unauthorized physical access to the building, to the dattind internal network.

Social engineering.

Data might be modified, secret data might be read (e.g. bemeesor remote via the network).
Key generation might be predictable or weak.

Key encryption might be weak.

Integrity measures used might be weak.

Data might be lost.

Trust by the users might be lost.

Organization and physical measures:

m Physical access control to the building (e.g., guards).
m Training and guidelines for the personnel.
m Secure backup procedures.

IT security functions:

m Key generation (random number generator of 'good’ quality)

m Key distribution (encrypting+securing for data integritithe session key).
m Access control of the network / firewall.

m Timestamp service.

10.5

1. 6292 = x modn = valid signature
2. 4768 +# x modn = invalid signature
3. 1424 = x modn = valid signature

10.7

Oscar recieves the message, alters it and signs it with hispsivate keya’. Then he sends the new
message together with the signature and the putativelyoapge public key(n',€') of Alice (which is
instead the one of Oscar).

109
1. Sigk, (X) =x? modn=y

VENKpy (X,Y) - x= y® modn

Assume thatl hasl bits.

Using the square & multiply algorithm, the average signinljtake:

#3 ~ | squarings 4 - | multiplications =3 - |

Sinceb = 2164+ 1 = 65537= 10000000000000@1the average verification takes:
#® = 16 squarings+ 1 multiplication= 17

2. Signing takes longer than verification.
| [bits]| Tunt | n| goelis | T(sig) | T(ver) |

operation

3. 512 [100ns|16| 25.6 us| 19.7 ms [4352 us
1024|100ns{32|1024 ps|157.3 ms|1.741ms
4. T(I®) = (5'—3)2 -+ time for one multiplication modulp

Tunit

T(sg)=3-1" operation >
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Tunit . |—2-T )
operation 8 '™
1
F> HZ
o Tunit[ ]
i) 6.29MHz
ii) 50.33MHz
10.11
1. a*=310=25mod 31
a.y=17,6=5
t=pBY.y2=6Y.17°=26-26=25mod 31=1t = a* = ver(x,(y,8)) = 1 (0k)
b. y=13,6=15

t=pY-y°=62.1315=6.30=25mod 31=t = a* = ver(x,(y,d)) = 1 (0k)

2. Due to the fact that the Elgamal signature scheme is pilidial) there arep — 1, i.e. 30, different
signatures for each message

10.13

s1= (xa—dr)kg modp—1
S = (e—drkg = (x—dr)(kg,+1) ' modp-1
st _ (xa—dr)(ke, +1)

= = = modp—1
) (X2 —dr)kg, P

Sk = S 0G_dD) modp—1

S (xq—dr)
=d= Xl_rslkEl modp—1

10.15 Similarly to the attack on Elgamal, an attacker can useofig system of equations

s; = (SHA(x1) +dr) k! modq
S = (SHA(x) +dr) kgt modq

for knowns;, s, X3, andxs to first compute the ephemeral kiy and then the private kay.
51— = kL (SHA(xy) — SHA(xz)) modg
SHA(x;) — SHA
ke = (x1) (x2)

=9
_ si-ke — SHAGG)
- r

mod(q

=d modq

Problems of Chapter 11

111

1. Ay = Eo+ f1(Bo,Co, Do) + (A) <5+ Wj +K; = 5A827999, By = Ag = 0000000Qex C1 = (Bo) << <30 =
0000000@e D1 = Co = 0000000 E1 = Dg = 0000000Qe

2. Ay =Ep+ f1(Bo,Co, Do) + (A) < c c5-+W; -+ K; = 6A827999 e By = Ag = 0000000Qe C1 = (Bo) < < 30 =
0000000@e D1 = Co = 0000000y E1 = Do = 00000008e
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11.3
X X
s
N
| \
Hl—l — = € Hl—l - €
Y
M Y
© b
Y Y
Hi Hi
(@) e(Hi—1,%) & (b) e(Hi_1,x ®Hi_1) ®x ®Hi_1
Hi—l
X
)
N
|
X| — e
Hl—l ~ €
Y
M
=
Y
H. H,

| |
(d) e(Hi—1,x ®Hi_1) ®&X (e) e(xi,Hi—1) ®Hi-1

21

I
iR

Y

D

N

Y

H.

|
() e(xi,xi ®Hi_1) ®x & Hi_1
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Hi—l Hi—l
D X
Y
Xi —— € Xi > € Y
Y
Hiy = e
\
(D=
y
H; H, H;
(9) e(x,Hi—1) Ox OHi_1 (h) e(xi, % ®Hi—1) DHi_1 (i) e(x ©Hi_1,%) X
Hi—l
X
Hi—l
' Y X
Y —
' et —— @ € | €
X b— e
Y
Y
D ~P
Y \j
H, H. H,
() e(x ®Hi_1,Hi_1) ®Hi_1 (K) e(x ®Hi—1,x) DHi_1 () e(x ®Hi_1,Hi_1) ®X

115
Birthday attack: k

X
>
3
|

nle=05 =01
204136-10° 1.4-10°
212811 5.10'96.0-10'8
216011 5.10%43.9-10%

number of messages after which probability for collisios is
11.7

1. 128 bit

2. If c =0, both halfs of the output compute exactly the same 64 bitevdfience, even thoughy has
128 bit, it only has an entropy of 64 bit. You, as an attackenpsy provide(Ho, Hor) and some
start value forx; (e..g., 64 zeros) as input to the hash function. You now setimough possible




Solutions to Homework Problems (Odd Numbered Problems) 23

passwords by incrementing. This way, you will generate pseudo-random output&ven though
there is a chance you will not generate at the output, the likelihood is small. Note that you can
also try valuesx; which have more than 64 bit by iterating the hash function.

3. A second-preimage attack

4. Whenc # 0 both halfs of the output will almost never be the same. S ethtropy of the output
grows to (round about) 128 bit which makes a second-preiratigek computational infeasible.

Problems of Chapter 12

121

1. m Calculatex||h =g (y).
m Calculateh’ = H(ky||x).
m If h="N, the message is authenticHf£ H, either the message or the MAC (or both) has been
altered during transfer.
2. m Calculatex|[s= g _*(y).
m Calculateh’ = H(x).
m Verify the signaturevery,, (s,H (X))

12.3

1. ¢ =z@{xX... Xn|[HIX)H2(X)...Hn(¥)};  i=1,2,...,n+m
1) Assumex hasn bits. Oscar first computes
Z =X DG, i=12,...,n

2) Oscar recomputds$(x) since he knows.
3) AssumeH (x) hasm output bits. Oscar computes

Ziin=Hj(X) ®Cj1n i=12,....m
4) Oscar computeld (x')

5) Oscar computes

C=z®X i=12,...,n

C/j+n:Zj+n®Hj(X/) j:1,2,...,m

2. No. Although Oscar can still recovar, 2, . . ., z,, he can not recover the bit-stream portgn, z, 2, - - ., Znim

which was used for encrypting ACy, (x). Even if he would know the whole bit-stream, he would not
be able to compute a vallAC, (X) since he does not knoky.

125

1. This attack assumes that Oscar can trick Bob into sigriiegiiessage;. This is, of course, not
possible in every situation, but one can imagine scenarese/Oscar can pose as an innocent party
andx; is the message being generated by Oscar.

Alice Oscar Bob

X1
—_—

m= MACk(Xl)

(Xo,m) (x1,m)

replace!

m = MACk(Xz)
ver(m',m) = true

2. For constructing collisions, Oscar must be able to compbbuty/2" MACs, wheren is the output
width. Since Oscar does not have the secret key, he has tohsanteck Alice and/or Bob into
computing MACs for that many messages. This is in practitenoimpossible. On the other hand,
collisions for hash functions can be constructed by Oscaritmgelf without the help of Alice and
Bob because these computations are un-keyed.

An 80 bit MAC provides thus a security 0f2since collision attacks are not applicable. A hash
function with the same output size offers only a securitylofat 2:°.



24 Solutions to Homework Problems (Odd Numbered Problems)

Problems of Chapter 13

13.1

1. (1) Session keys are derived by a linear and invertibtgi&ration of the previous session key.
(2) Usage of hash functions, thus a non-linear correlatfdhesession keys.
(3) Usage of the masterkey and the previous session key éoy éerivation of the next session key.
. Methods (2) and (3), since the old session keys cannottbectad from the recent session key
3. (1) every session, since PFS is missing
(2) every session using the hacked sessionk¢ggnd every following session
(3) only the recent session, since the (unknown) masteskegead for every furterh key derivation
4. No, since then, all session keys can be calculated!

13.3

The first class of encryptions (between the KDC and a usen)ldhm® done using 3DES. The session
between two arbitrary users (the second class) should bgptad using DES. There are two major
reasons for this choice:

N

m A brute-force attack against DES is already possible arat@dible even for non-govermental orga-
nizations. If a session key is compromised, only the coordmng session will be involved. Though,
if it were possible to find a certaily xpc, all previous and future communication of the user U
could be eavesdropped. This being the case and since tieeme &nown attacks against 3DES with
an affordable complexicity, 3DES should be used for enangpthe session keys.

m The amount of plaintext to be encrypted vary widely for bd#sses:
In the first case, only one session key consisting of a fewshly#es to be encrypted, while a session
(i.e. the second class) may consist of a vast amount of dataneltiple gigabytes for video confer-
ences. Since 3DES is round about three times slower than D&8uld seem the thing to use the
faster DES algorithm for the session data and the slowemflou¢ secure) 3DES for the session key
encryption.

135

Assuming that the hacker obtains the quKDC, he can initially encrypt recent session data, where

the session keyKss are encrypted WitrKLi,,kDC. He will also be able to decrypt the following keys
i+,|iDc until the attack is detected,J and new keys are exchanged using a secure channel. Heince, al

communication betwee andty may be compromised. Though, he is, even with knowledd€,afpc.,

not able to recovd(bf,%DC. Hence, he cannot decrypt messages before the point ofitineconclusion,
this variant provides Perfect Forward Secrecy.

13.7

1. Once Alice’s KEKKka is being compromised, Oscar can compute the sessiorkkewnnd, thus,
decrypt all messages.
2. The same applies to a compromised Kkgof Bob.

13.9

1. t = 10°bits/sec
gorage=t-r = 2h-10° bits/sec = 2- 3600- 10°bits/sec = 7.2 Ghits= 0.9 GByte
Storage of less than 1 GByte can be done at moderate costgretwrd disks or CDs.
2. Compute # keys that an attacker can recover in 30 days:
#Keys = 39085 _ 302460 _ 4370
Key derivation period:
Tkder = 700 = 1.67sec
Since hash functions are fast, a key derivation can easipelfermed (in software) at such a rate.

1311

m Alice: A= 2228=394 mod 467
kao = O = 156728 = 243 mod 467
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m Bob:B=2°=313 mod 467
kgo = O° = 156°” = 438 mod 467
m OscarO = 21%= 156 mod 467
kao = A° = 3946 = 243 mod 467kgo = B® = 3136 = 438 mod 467,

13.13

1. Alice would detect this forgery, since the certific&€O) is cryptographically bound to the ID of
Oscar and not to ID(A), which she expected.

2. This kind of forgery would be detected by validating thes<CAgnature of the public key, which will
naturally fail.

13.15

The signature of the CA merely covers fhablic key of a usekp,p, = a%. Even if all parameters of the
signature algorithm are announced, the private key willaienmcalculable (DL-problem!). l.e., Oscar
cannot calculate the session keys which were used beforecbgmized the CA's signature algorithm
and key. However, he is now capable of passing of himself gsuaer affiliated to the domain by
providing counterfeited certificates.

13.17

Alice Bob

- Cerg Certy . d

choose random k

=k® mod n
y y
k= yd mod n
message X
z= AESy(X) z
x= AESy (2

13.19 PGP makes use of the so calléb of Trust-Architecture. In contradictance of tree based archi-
tectures, a WoT only consists of equal nodes (persons) veaetenode is eligible to certify each other.
The validity of acertificate is then confirmed through a séecbChain of Trust. In principle, Alice trusts
in certificates which she created herself e.g. for Bob. Thenadso trusts in a certificate Bob created
and so on. The main advantage of this system is the lack dfampirusted CAs with the drawback of
partially long and complicated Chains of Trust.



