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2 Solutions to Homework Problems (Odd Numbered Problems)

Problems of Chapter 1

1.1

1. Letter frequency analysis of the ciphertext:

letter count freq [%] lettercount freq [%]
A 5 0.77 N 17 2.63
B 68 10.53 O 7 1.08
C 5 0.77 P 30 4.64
D 23 3.56 Q 7 1.08
E 5 0.77 R 84 13.00
F 1 0.15 S 17 2.63
G 1 0.15 T 13 2.01
H 23 3.56 U 24 3.72
I 41 6.35 V 22 3.41
J 48 7.43 W 47 7.28
K 49 7.59 X 20 3.10
L 8 1.24 Y 19 2.94
M 62 9.60 Z 0 0.00

2. Because the practice of the basic movements of kata is the focus and
mastery of self is the essence of Matsubayashi Ryu karate do, I shall
try to elucidate the movements of the kata according to my interpretation
based on forty years of study.

It is not an easy task to explain each movement and its significance,
and some must remain unexplained. To give a complete explanation, one
would have to be qualified and inspired to such an extent that he could
reach the state of enlightened mind capable of recognizing soundless
sound and shapeless shape. I do not deem myself the final authority,
but my experience with kata has left no doubt that the following is
the proper application and interpretation. I offer my theories in the
hope that the essence of Okinawan karate will remain intact.

3. Shoshin Nagamine, further reading:The Essence of Okinawan Karate-Do by Shoshin Nagamine,
Tuttle Publishing, 1998.

1.3
One search engine costs $ 100 including overhead. Thus, 1 million dollars buy us 10,000 engines.

1. key tests per second: 5·108 ·104 = 5 ·1012 keys/sec
On average, we have to check(2127 keys:
(2127keys)/(5 ·1012keys/sec) = 3.40·1025sec= 1.08·1018years
That is about 108 = 100,000,000 times longer than the age of the universe. Good luck.

2. Let i be the number of Moore iterations needed to bring the search time down to 24h:
1.08·1018years·365/2i = 1day
2i = 1,08·1018·365days/1day
i = 68.42
We round this number up to 69 assuming the number of Moore iterations is discreet. Thus, we have
to wait for:
1.5 ·69= 103.5 years
Note that it is extremely unlikely that Moore’s Law will be valid for such a time period! Thus, a 128
bit key seems impossible to brute-force, even in the foreseeable future.

1.5

1. 15·29 mod 13≡ 2 ·3 mod 13≡ 6 mod 13
2. 2·29 mod 13≡ 2 ·3 mod 13≡ 6 mod 13
3. 2·3 mod 13≡ 2 ·3 mod 13≡ 6 mod 13
4. 2·3 mod 13≡ 2 ·3 mod 13≡ 6 mod 13
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15, 2 and -11 (and 29 and 3 respectively) are representationsof the same equivalence class modulo 13
and can be used “synonymously”.

1.7

1.

Multiplication table forZ4

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

2.

Addition table forZ5 Multiplication table forZ5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

3.

Addition table forZ6 Multiplication table forZ6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

4. Elements without a multiplicative inverse inZ4 are 2 and 0
Elements without a multiplicative inverse inZ6 are 2, 3, 4 and 0
For all nonzero elements ofZ5 exists because 5 is a prime. Hence, all nonzero elements smaller than
5 are relatively prime to 5.

1.9

1. x = 9 mod 13
2. x = 72 = 49≡ 10 mod 13
3. x = 310 = 95≡ 812 ·9≡ 32 ·9≡ 81≡ 3 mod 13
4. x = 7100= 4950≡ 1050≡ (−3)50 = (310)5 ≡ 35≡ 32 = 9 mod 13
5. by trial: 75≡ 11 mod 13

1.11

1. FIRST THE SENTENCE AND THEN THE EVIDENCE SAID THE QUEEN
2. Charles Lutwidge Dodgson, better known by his pen name Lewis Carroll

1.13

a ≡ (x1− x2)
−1(y1− y2) modm

b ≡ y1− ax1 modm

The inverse of(x1− x2) must exist modulom, i.e., gcd((x1− x2),m) = 1.
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Problems of Chapter 2

2.1

1. yi = xi +Ki mod 26
xi = yi−Ki mod 26
The keystream is a sequence of random integers fromZ26.

2. x1 = y1−K1 = ”B” − ”R” = 1−17=−16≡ 10 mod 26= ”K” etc · · ·
Decrypted Text: ”KASPAR HAUSER”

3. He was knifed.

2.3
We need 128 pairs of plaintext and ciphertextbits (i.e., 16 byte) in order to determine the key.si is being
computed by
si = xi

⊕
yi; i = 1,2, · · · ,128.

2.5

1.

Z
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0
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0
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0


= Z
0


= Z
1


= Z
2


= Z
3


= Z
4


= Z
5


= Z
6


= Z
7
 = Z
0


Sequence 1: z
0
 = 0 0 1 1 1 0 1 0 0 1 1 1 0 1 ...


2.
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0
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0


0


1


1


1


1


1


0


1


0


0
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1


= Z
0


= Z
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= Z
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= Z
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= Z
4


= Z
5


= Z
6


= Z
7
 = Z
0


Sequence 2: z
0
 = 1 1 0 1 0 0 1 1 1 0 1 0 0 1 ...
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3. The two sequences are shifted versions of one another.

2.7
The feedback polynomial from 2.3 isx8+ x4+ x3+ x+1.

0

0 1 1 1 0 0 1

1 0 0 1 1 1 0 0

0 1 0 0 1 1 1 0

0 0 1 0 0 1 1 1

= Z

= Z

= Z

= Z

= Z

0

1

2

14

15

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

1 0 0 0 0 1 1 1

0 1 0 0 0 0 1 1

0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0

1 1 0 0 1 0 0 0

1 1 1 0 0 1 0 0

0 1 1 1 0 0 1 0

0

s7 s6 s5 s4 s3 s2 s1

CLK

0s

So, the resulting first two output bytes are(1001000011111111)2= (90FF)16.

2.9

1. The attacker needs 512 consecutive plaintext/ciphertext bit pairsxi, yi to launch a successful attack.
2. a. First, the attacker has to monitor the previously mentioned 512 bit pairs.

b. The attacker calculatessi = xi + yi mod 2,i = 0,1, . . . ,2m−1
c. In order to calculate the (secret) feedback coefficientspi, Oscar generates 256 linearly dependent

equations using the relationship between the unknown key bits pi and the keystream output defined
by the equation

si+m ≡
m−1

∑
j=0

p j · si+ j mod 2;si, p j ∈ {0,1} ; i = 0,1,2, ...,255

with m = 256.
d. After generating this linear equation system, it can be solved e.g. using Gaussian Elimination,

revealing the 256 feedback coefficients.
3. The key of this system is represented by the 256 feedback coefficients. Since the initial contents of

the LFSR are unalteredly shifted out of the LFSR and XORed with the first 256 plaintext bits, it
would be easy to calculate them.

2.11
xi
⊕

yi = xi
⊕
(xi

⊕
zi) = zi

W ⇐⇒ 22= 101102 J⇔ 9= 010012

P⇐⇒ 15= 011112 5⇐⇒ 31= 111112
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I⇔ 8= 010002 A⇔ 0= 000002

xi = 10110 01111 01000
yi = 01001 11111 00000
zi = 11111 10000 01000

1. Initialization Vector:(Z0 = 1,1,1,1,1,1)
2.











C0

C1

C2

C3

C4

C5











=











1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0











−1

·











0
0
0
0
0
1











=











1
1
0
0
0
0











3. yi =

J
︷ ︸︸ ︷

01001

5
︷ ︸︸ ︷

11111

A
︷ ︸︸ ︷

00000

0
︷ ︸︸ ︷

11010

E
︷ ︸︸ ︷

00100

D
︷ ︸︸ ︷

00011

J
︷ ︸︸ ︷

01001

2
︷ ︸︸ ︷

11100

B
︷ ︸︸ ︷

00001
zi = 11111 10000 01000 01100 01010 01111 01000 11100 10010

xi = 10110
︸ ︷︷ ︸

W

01111
︸ ︷︷ ︸

P

01000
︸ ︷︷ ︸

I

10110
︸ ︷︷ ︸

W

01110
︸ ︷︷ ︸

O

01100
︸ ︷︷ ︸

M

00001
︸ ︷︷ ︸

B

00000
︸ ︷︷ ︸

A

10011
︸ ︷︷ ︸

T

4. Wombats live in Tasmania.
5. Known-plaintext Attack.

Problems of Chapter 3

3.1

1. s(x1)
⊕

s(x2) = 1110
s(x1

⊕
x2) = s(x2) = 00006= 1110

2. s(x1)
⊕

s(x2) = 1001
s(x1

⊕
x2) = s(x2) = 10006= 1001

3. s(x1)
⊕

s(x2) = 1010
s(x1

⊕
x2) = s(x2) = 11016= 1010

3.3
S1(0) = 14= 1110
S2(0) = 15= 1111
S3(0) = 10= 1010
S4(0) = 7 = 0111
S5(0) = 2 = 0010
S6(0) = 12= 1100
S7(0) = 4 = 0100
S8(0) = 13= 1101
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P(S) = D8D8 DBBC
(L1,R1) = 0000 0000D8D8 DBBC (1)

3.5
• IP(x) maps bit 57 to position 33, which is position 1 inR0.
• E-Expansion box maps bit position 1 to positions 2 and 48.

• Input to S-Boxes:
S1 : 0 1 0 0 0 0
S2 = S3 = · · ·= S7 : 0 0 0 0 0 0
S8 : 0 0 0 0 0 1

⇒ Two S-Boxes get a different input.
P(S) = D058 5B9E
(L1,R1) = 8000 0000D058 5B9E

1. 2 S-Boxes,S1 andS8

2. According to design criteria, a minimum of 2 bits/bit.
⇒ 2 ·2= 4bits

3. See (1).
4. 6 bits have changed:

3 fromS1

2 fromS8

1 in the left half

3.7

1. K1+i = K16−i for i = 0,1, ...7.
2. Following (a), two equations are established:

C1+i = C16−i

D1+i = D16−i fr i = 0,1, ...,7.

These equations yield

C0, j = 0 undD0, j = 0 or

C0, j = 0 undD0, j = 1 or

C0, j = 1 undD0, j = 0 oder

C0, j = 1 undD0, j = 1 fr j = 1,2, ...,28.

Hence the four weak keys after PC-1 are given by:

K̂w1 = [0...0 0...0]

K̂w2 = [0...0 1...1]

K̂w3 = [1...1 0...0]

K̂w4 = [1...1 1...1]

3. P(randomly chose a weak key) = 22

256 = 2−54.

3.9
Worst-Case: 256 keys.
Average: 256/2= 255 keys.

3.11

1. A single DES engine can compute 100·106 DES encryptions per second. A COPACOBANA machine
can, thus, compute 4· 6 · 20· 100· 106 = 4.8 · 1010 DES encryptions per second. For an average of
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255 encryptions for a successfull brute-force attack on DES, 255/(4.8 ·1010) ≈ 750600 seconds are
required (which approximately is 8.7 days).

2. For a successfull average attack in one hour, 8.72̇4≈ 18 machines are required.
3. The machine performs a brute–force attack. However, there might be more powerful analytical at-

tacks which explore weaknesses of the cipher. Hence, the key–search machine provides only a lower
security threshold.

3.13

1. The state of PRESENT after the execution of one round isF000 0000 0000 000F. Below you
can find all intermediate values.

Plaintext 0000 0000 0000 0000
Round key BBBB 5555 5555 EEEE
State after KeyAddBBBB 5555 5555 EEEE
State after S-Layer8888 0000 0000 1111
State after P-LayerF000 0000 0000 000F

2. The round key for the second round is7FFF F777 6AAA AAAA. Below you can find all interme-
diate values.

Key BBBB 5555 5555 EEEE FFFF

Key state after rotation DFFF F777 6AAA AAAA BDDD
Key state after S-box 7FFF F777 6AAA AAAA BDDD
Key state after CounterAdd7FFF F777 6AAA AAAA 3DDD
Round key for Round 2 7FFF F777 6AAA AAAA

Problems of Chapter 4

4.1

1. The successor of the DES, the AES, was chosen by the NIST by apublic proceeding. The purpose
of this public contest was to allow broadly evaluation of thecandidates by as many research organi-
sations and institutes as possible.
This strongly contrasts to the development of DES, which wasonly performed by IBM and the NSA
firstly keeping details (e.g. the S-boxes) in secret. DES waspublished and standardized in 1975.

2. 1/2/97: Call for algorithms, which could potentially lead to the AES. The selection process was
governed by the NIST. 8/20/98: 15 algorithms were nominatedas candidates for the selection process.
9.8.1999: 5 algorithms reach the ”finals” (Mars, RC6, Rijndael, Serpent, Twofish)
2.10.2000: NIST elects Rijndael to AES.

3. Rijndael
4. Dr. Vincent Rijmen and Dr. Joam Daemen from Belgium
5. Rijndael supports blocksizes of 128, 192 and 256 bit, as well as key lengths of 128, 192 and 256 bit.

In fact, only the version with 128 bit blocksize (and all three key lengths) is called AES.

4.3
Multiplication table forGF(23), P(x) = x3+ x+1

× 0 1 x x+1 x2 x2+1 x2+ x x2+ x+1
0 0 0 0 0 0 0 0 0
1 0 1 x x+1 x2 x2+1 x2+ x x2+ x+1
x 0 x x2 x2+ x x+1 1 x2+ x+1 x2+1

x+1 0 x+1 x2+ x x2+1 x2+ x+1 x2 1 x
x2 0 x2 x+1 x2+ x+1 x2+ x x x2+1 1

x2+1 0 x2+1 1 x2 x x2+ x+1 x+1 x2+ x
x2+ x 0 x2+ x x2+ x+1 1 x2+1 x+1 x x2

x2+ x+1 0 x2+ x+1 x2+1 x 1 x2+ x x2 x+1

4.5 Multiplication in GF(24):
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1. A(x)∗B(x) = (x2+1)(x3+ x2+1) = x5+ x4+ x2+ x3+ x2+1
A(x)∗B(x) = x5+ x4+ x3+1

x +1
x4+ x+1 x5 +x4 +x3 +1

x5 +x2 +x
x4 +x3 +x2 +x +1
x4 +x +1

x3 +x2

C = x3+ x2≡ A(x)∗B(x) modP(x).
2. A(x)∗B(x) = (x2+1)(x+1) = x3+ x+ x2+1

C = x3+ x2+ x+1≡ A(x)∗B(x) modP(x)

The reduction polynomial is used to reduceC(x) in order to reduce the result toGF(24). Otherwise, a
’simple’ multiplication without reduction would yield a result of a higher degree (e.g., withx5) which
would not belong toGF(24) any more.

4.7

1. By the Extended Euclidean algorithm:
x4+ x+1 = [x3](x)+ [x+1] t2(x) = t0− q1t1 =−q1 =−x3 = x3

x = [1](x+1)+1 t3(x) = t1− q2t2 = 1−1∗ x3 = 1− x3 = x3+1
x+1 = [x+1](1)+0

So,A−1 = x3+1.
Check:x∗ (x3+1) = x4+ x≡ (x+1)+ x modP(x) = 1 modP(x).

2. By the Extended Euclidean algorithm:
x4+ x+1 = [x2+ x+1](x2+ x)+ [1] t2 = t0− q1t1 =−q1 = x2+ x+1
x2+ x = [x2+ x]1+[0]

So,A−1 = x2+ x+1.
Check:(x2+ x)(x2+ x+1) = x4+2x3+2x2+ x = x4+ x≡ (x+1)+ x modP(x) = 1 modP(x).

4.9

�

B = ByteSub(A) =







16 16 16 16
16 16 16 16
16 16 16 16
16 16 16 16







� The ShiftRows operation does not change anything since all bytes of B equal each other.
� The MixComumn operation is equal for every resultig byteCi and is described by

(01+01+02+03)hex · (16)hex. We have to remind, that all calculations have to be done inGF(28),
so that(01+01+02+03)hex = (01)hex and hence, all resulting bytes of C remain(16)hex⇒

C = MixColumn(B) =







16 16 16 16
16 16 16 16
16 16 16 16
16 16 16 16







� The first round key equals the unmodified AES key. So, the output of the first is

C⊕K =







16 16 16 16
16 16 16 16
16 16 16 16
16 16 16 16






⊕







FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF






=







E9 E9 E9 E9
E9 E9 E9 E9
E9 E9 E9 E9
E9 E9 E9 E9







4.11
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1. d = 01,b = 1∗ (b7x7+ . . .+ b0) = b.
d0 = b0, d1 = b1, . . . ,d7 = b7.

2. d = 02∗ b = x(b7x7+ . . .+ b0) = b7x8+ b6x7+ . . .+ b0x
x8≡ x4+ x3+ x+1 modP(x).
d = b6x7+ b5x6+ b4x5+[b3+ b7]x4+[b2+ b7]x3+ b1x2+[b0+ b7]x+ b7

d7 = b6 d6 = b5

d5 = b4 d4 = b3+ b7

d3 = b2+ b7 d2 = b1

d1 = b0+ b7 d0 = b7

3. d = 03∗ b = (x+1)b = xb+ b
Using solutions from a) and b):
d = (b6+ b7)x7 +(b5 + b6)x6 +(b4+ b5)x5 +(b3 + b4 + b7)x4 +(b2+ b3+ b7)x3 +(b1 + b2)x2 +
(b0+ b1+ b7)x+(b0+ b7)
d7 = b6+ b7 d6 = b5+ b6

d5 = b4+ b5 d4 = b3+ b4+ b7

d3 = b2+ b3+ b7 d2 = b1+ b2

d1 = b0+ b1+ b7 d0 = b0+ b7

4.13

1. A = 01h, A(x) = 1
A−1(x) = 1= 01h

A−1(x) is now the input to the affine transformation of Rijndael as described in Subsection 4.2.1 of
the Rijndael Specifications:

M ·A−1+V

whereM andV are a fixed matrix and vector, respectively.

M ·A−1+V = M ·















1
0
0
0
0
0
0
0















+















1
1
0
0
0
1
1
0















=















1
1
1
1
1
0
0
0















+















1
1
0
0
0
1
1
0















=















0
0
1
1
1
1
1
0















ByteSub(01h) = 7Ch

2. A = 12h, A(x) = x4+ x
Apply extended Euclidean algorithm:A−1(x) = x7+ x5+ x3+ x = AAh.

M ·A−1+V = M ·















0
1
0
1
0
1
0
1















+















1
1
0
0
0
1
1
0















=















0
1
0
1
0
1
0
1















+















1
1
0
0
0
1
1
0















=















1
0
0
1
0
0
1
1















Remark: It is (big) coincidence thatM ·A−1 = A−1. This only holds for this specific value ofA−1.
ByteSub(12h) = C9h

4.15

1. RC[8] = x7 = (10000000)2

2. RC[9] = x8 = x4+ x3+ x+1= (00011011)2

3. RC[10] = x9 = x8 · x = x5+ x4+ x2+ x = (00110110)2
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Problems of Chapter 5

5.1
Since the records are not related, we typically want to access only a single record and not its adjacent
ones. The use of CBC mode is thus not well suited. ECB most seems to be the best choice.

5.3
The decryption of an ”CBC-encrypted” file is defined byxi = dK(yi)⊕ yi−1. Since you know the key
K and the pair(x0,y0) (from the first file), the unknown IV can easily be obtained by converting the
equation:

IV = y−1 = dk(y0)⊕ x0

After that, the second (unidentified) file can easily be decrypted by using the decryption equation men-
tioned above (withy−1 = IV ).

5.5
If the same IV is used for the OFB encryption, the confidentiality may be compromized. If a plaintext
block x j of such a messagem is known, the output can be computed easily from the ciphertext block y j

of the messagem. This information then allows the computation of the plaintext blockx′j of any other
messagem′ that is encrypted using the same IV.

5.7

1.
2. The problem with the scheme is that there are only 256 different inputsFBi to the AES algorithm.

That means there are only 256 different output vectors of length 128bit that form the keystream.
To make things worse, the cipher output will run into a cycle quickly. Let’s denote the sequence of
feedback bytes byFB1,FB2, . . . As soon as a feedback byteFB j is generated that is equal to an
earlier oneFBi, i.e.,i < j, the sequence

FBi,FBi+1, . . . ,FB j = FBi,FBi+1, . . . ,FB j = FBi,FBi+1, . . .

repeats periodically. Since there are only 256 different values forFB, the maximum sequence length
is 256. Since each value is associated with a 128 (16 byte) AESoutput, the keystream sequencesi

has a maximum cycle length of:

128×16= 2048byte= 2kbyte.

After this, the stream cipher output must repeat (and odds are that the cycle lenght is much shorter).
Thus, if an attacker has to know at most 2kB of plaintext in order to recover the entire stream cipher
output with which he can decrypt all other ciphertext.

3. No, we still only generate a maximum of 256 keystream wordsof length 16 byte.

Remark: In the chapter on hash functions we will learn about the birthday paradox. This is applicable
here too and tells us that the expected length of the sequenceis in fact approximately

√
256= 16.

5.9
The counter has to encrypt 1 TB of data without repeating itself. This yields an IV of maximum size of
91= 128−36 bits.

5.11
A missing or deleted bit inyi affects thei-th feedback bit which enters the shift register of size ofκ bit.
After κ +1 steps, the affected feedback bit leaves the shift register. As a consequence, all subsequent
decryptions (i.e., decryptions ofyi+κ+...) are again correct.

5.13
With AES having a block size of 128 bit, a key search for AES-128 requires only a single pair of
plaintext-ciphertext in order to identify the correct key.In case of AES-192, given a single pair(x,y)
of plaintext and ciphertext, there are 2192−128= 264 possible keyski satisfyingy = eki(x). In order to
find the correct key with a probability of 50 percent, we require 263 pairs of plaintexts and ciphertexts.
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For achieving the same probability with AES-256, 2127 plaintexts and ciphertexts are required (which is
very very unlikely)!

5.15 y′ = eK3(eK2(eK1(x
′)))

1. Pre–computeeKi(x
′) = z(1)i ; i = 1,2, . . . ,256 and store all pairs(z(1)i ,Ki)

2. Decryptz(2)a,b = e−1
Kb
(e−1

Ka
(y′)); a = 1,2, . . . ,256; b = 1,2, . . . ,256

If a match is found, if there is az(2)a,b = z(1)i test further key pairs(x′′,y′′), (x′′′,y′′′), . . . , with the three
keys involved in the match:
If the three keys generate a valid encryption for all pairs, these are most likely the correct keys. Other
wise continue with the next pairKa,Kb.
l = 3; t = 3 pairs
23·56−3·64= 2−3·8 = 2−24

⇒ t = 3 pairs(x,y) are sufficient

Problems of Chapter 6

6.1 From a theoretical point of view, public key cryptography can be used as a replacement for symmet-
ric cryptography. However, in practical applications, symmetric ciphers tend to be approximately 1000
times faster than public key schemes. Hence, symmetric ciphers are used when it comes to bulk data
encryption.

6.3 If every pair out ofn = 120 employees requires a distinct key, we need in sum

n · n−1
2

= 120· 120−1
2

= 7140

key pairs. Remark that each of these key pairs have to be exchanged in a secure way (over a secure
channel)!

6.5

1. gcd(7469,2464)= 77
2. gcd(4001,2689)= 1

6.7

1. gcd(26,7) = 1
q1 = 3, q2 = 1, q3 = 2
t2 =−3, t3 = 4, t4 =−11
a−1≡ t4 modm≡−11 mod 26= 15

2. gcd(999,19) = 1
q1 = 52,q2 = 1, q3 = 1, q4 = 2, q5 = 1
t2 =−52,t3 = 53,t4 =−105,t5 = 263,t6 =−368
a−1≡ t6 modm≡−368 mod 999= 631

6.9

1. φ(p) = (p1− p0) = p−1
2. φ(p ·q) = (p−1) · (q−1)

φ(15) = φ(3 ·5) = 2 ·4= 8
φ(26) = φ(2 ·13) = 1 ·12= 12

6.11

1. m = 6; φ(6) = (3−1) · (2−1)= 2;
Euler’s Theorem:a2≡ 1 mod 6, if gcd(a,6) = 1
02≡ 0 mod 6;
12≡ 1 mod 6;
22≡ 4 mod 6;
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32≡ 9≡ 3 mod 6;
42≡ 16≡ 4 mod 6;
52≡ 25≡ 1 mod 6

2. m = 9; φ(9) = 32−31 = 9−3= 6;
Euler’s Theorem:a6≡ 1 mod 9, if gcd(a,9) = 1
06≡ 0 mod 9;
16≡ 1 mod 9;
26≡ 64≡ 1 mod 9;
36≡ (33)2 ≡ 02≡ 0 mod 9;
46≡ (26)2 ≡ 12≡ 1 mod 9;
56≡ 1 mod 9;
66≡ 26 ·36≡ 1 ·0≡ 0 mod 9;
76≡ 1 mod 9;
86≡ 1 mod 9

6.13
Euclid’s Algorithm:

Iteration 2:r0 = q1r1+ r2 r2 = r0− q1r1 = s2r0+ t2r1 (1)
Iteration 3:r1 = q2r2+ r3 r3 = [−q2] · r0+[1+ q1q2] · r1= s3r0+ t3r1 (2)

⇒ from (1),(2):s2 = 1; s3 =−q2 (3)
t2 =−q1; t3 = 1+ q1q2 (4)

The iteration formula for the Euclidean Algorithm gives:

(5) s2
EA
= s0− q1s1

(3)
= 1

(6) s3
EA
= s1− q2s2

(3)
= s1− q2

(3)
= −q2

(6)⇒ s1 = 0
(5)⇒ s0 = 1

(7) t2
EA
= t0− q1t1

(4)
= −q1

(8) t3
EA
= t1− q2t2

(4)
= t1+ q1q2

(4)
= 1+ q1q2

(8)⇒ t1 = 1
(7)⇒ t0 = 0

Problems of Chapter 7

7.1

1. Onlye= 31 is a valid public key, becauseΦ(n) = (p−1)(q−1)= 40·16= 640= 27 ·5. Furthermore
gcd(ei,φ(n)) = 1 has to be fulfilled. Hence, onlye2 = 49 may be used as public exponent.

2. Kpub = (n,e) = (697,49)
Calculation ofd = e−1 modφ(n) = 49−1 mod 640 using EEA:

640= 13·49+3

49= 16·3+1

⇔ 1 = 49−16·3
= 49−16(640−13·49)

= 209·49−16·640

⇒ 49−1 mod 640≡ 209.

So, the private key is defined byKpr = (p,q,d) = (41,17,209).

7.3

1. e = 3; y = 26
2. d = 27;y = 14



14 Solutions to Homework Problems (Odd Numbered Problems)

7.5

1. In this case, a brute-force attack on all possible exponents would be easily feasible.
2. As an absolute minimum, a bit length of 128 bit is recommended in order to preclude brute-force

attacks on the private exponent. However, the exponent musteven be larger since there exist analytical
attacks which are more powerful. In practice, a length ford of least 0.3 times the bit length ofn is
recommended, i.e. for RSA-2048 the exponent should at least615 bit.

7.7
p = 31,q = 37,e = 17,y = 2

� n = 31·37= 1147
d = 17−1 = 953 mod 1080

� dp = 953≡ 23 mod 30
dq = 953≡ 17 mod 36

� xp = ydp = 223≡ 8 mod 31
xq = ydq = 217≡ 18 mod 37

� cp = q−1 = 37−1≡ 6−1≡ 26 mod 31
cq = p−1 = 31−1≡ 6 mod 37

� x = [qcp]xp +[pcq]xq =
[37·26]8+[31·6]18=
8440= 721 mod 1147

7.9

Alice Bob
setup:kpr = d; kpub = e
publishe,n

choose random session keykses

y = ekpub(kses) = ke
ses modn

y−−−−−−−−−−→
kses = dkpr(y) = yd modn

Alice completely determines the choice of the session keykses.
Note that in practicekses might be much longer than needed for a symmmetric-key algorithm. For

instance,kses may have 1024 bits but only 128 actual key bits are needed. In this case just use the 128
MSB (or LSB) bit are used and the remaining bit are discarded.Often, it is safe practice to apply a
cryptographic hash function first tokses and then take the MSB or LSB bits.

7.11

1. Encryption equation:y≡ xe modn. We cannot solve the equation analytical, because the exponenti-
ation takes place in a finite ring, where no efficient algorithms for computing roots is known.

2.
Φ(n) = p ·q

No! The calculation ofΦ(n) presumes the knowledge ofp andq, which we do not have.
3. Factorization yields:p = 43 andq = 61

Φ(n) = 42·60= 2520
d ≡ e−1 mod 2520≡ 191
x = 1088

7.13

1. A message consists of, let’s say,m pieces of ciphertexty0,y1, . . . ,ym−1. However, the plaintext space
is restricted to 95 possible values and the ciphertext spacetoo. That means we only have to test 95
possible plaintext characters to build up a table containing all possible ciphertext characters:

Test: yi
?
= je modn; j = 32,33, . . . ,126

2. SIMPSONS
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3. With OAEP padding a random stringseed is used with every encryption. Sinceseed has in practice
a length of 128–160 bit, there exist many, many different ciphertexts for a given plaintext.

7.15
The basic idea is to represent the exponent in a radix 2k representation. That means we groupk bits of
the exponent together. The first step of the algorithm is to pre-compute a look-up table with the values
A0 = 1, A1 = A, A2, . . ., A2k−1. Note that the exponents of the look-up table values represent all possible
bit patterns of lengthk. The table computation requires 2k−2 multiplications (note that computingA0

andA1 is for free). After the look-up table has been computed, the two elementary operations in the
algorithm are now:

� Shift intermediate exponent byk positions to the left by performingk subsequent squarings (Recall:
The standard s-a-m algorithm shifts the exponent only by oneposition by performing one squaring
per iteration.)

� The exponent has nowk trailing zeros at the rightmost bit positions. Fill in the required bit pattern
for the exponent by multiplying the corresponding value from the look-up table with the intermediate
result.

This iteration is only performedl/k times, wherel+1 is the bit length of the exponent. Hence, there are
only l/k multiplications being performed in this part of the algorithm.

An exact description of the algorithm, which is often referred to ask-ary exponentiation, is given in
[120]. Note that the bit length of the exponent in this description ist k bit. An example for the casek = 3
is given below.

The complexity of the algorithm for anl +1 bit exponent is 2k−3 multiplications in the precompu-
tation phase, and aboutl−1 squarings andl(2k−1)/2k multiplications in the main loop.

Example 13.2. The goal is to computege modn with k-ary wheren = 163,g = 12,k = 3, e = 14510=
2218=23 = 10 010 0012
Precomputation:

g0 := 1
g1 := 12
g2 := g1 ·12= 144
g3 := g2 ·12= 1728 mod 163= 98
g4 := g3 ·12= 1176 mod 163= 35
g5 := g4 ·12= 420 mod 163= 94
g6 := g5 ·12= 1128 mod 163= 150
g7 := g6 ·12= 1800 mod 163= 7

Exponentiation:
Iteration Exponent (base 2)Calculation Operation

0 10 A := g2 = 144 TLU
1a 10 000 A := A8 mod 163= 47 3 SQ
1b 10 010 A := A ·g2 = 6768 mod 163= 85 MUL
2a 10 010 000 A := A8 mod 163= 140 3 SQ
2b 10 010 001 A := A ·g1 = 1680 mod 163= 50 MUL

In each iteration, three squarings results in a left shift which makes space for multiplying by the appro-
priate precomputed power ofg. For instance, if the next binary digits to be processed are(010)2 = (2)10,
we take the valueg2 = g2 from the look-up-table and multiply it by the intermediate result.
This example emphasizes the impact of the precomputations on the efficiency of the k-ary algorithm:
For the small operand lengths used here, the overall cost forthe exponentiation is worse than for the
s-a-m algorithm. This changes a lot for real-world operandswith 1024 or more bits, as the size of the
look-up-table only depends on the window sizek, and not on the operand length.
⋄

Problems of Chapter 8

8.1

1. Z∗5:
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a 1 2 3 4
ord(a)1 4 4 2

2. Z∗7:

a 1 2 3 4 5 6
ord(a)1 3 6 3 6 2

3. Z∗13:

a 1 2 3 4 5 6 7 8 9 10 11 12
ord(a)1 12 3 6 4 12 12 4 3 6 12 2

8.3

1.
|Z∗5|= 4
|Z∗7|= 6
|Z∗13|= 12

2. yes
3.

Z
∗
5 : 2,3

Z
∗
7 : 3,5

Z
∗
13 : 2,6,7,11

4.
φ(4) = 2
φ(6) = 2
φ(12) = 4

8.5

1. KpubA = 8 KpubB = 32 KAB = 78
2. KpubA = 137 KpubB = 84 KAB = 90
3. KpubA = 394 KpubB = 313 KAB = 206

8.7
Both values would yield public keys that would immediately allow to recognize the private key. If the
private key is equal to 1, the public key would be identical tothe primitive elementα. If an attacker
would detect this identity, he would know thatkpr = 1. If the private key is equal top−1, the public key
would take the value 1 according to Fermat’s Little Theorem.If an attacker notices this, he can deduce
thatkpr = p−1.

8.9

1. The order ofa = p−1 is 2, since

a1 = a = p−1; a2 = (p−1)2≡ (−1)2 = 1.

2. The subgroupHa, which is generated bya is defined byHa = {1, p−1} (or equallyHa = {1,−1}).
3. An attacker could alter the mutually used elementa to an elementa′ of the previously mentioned

form, so that it generates a subgroup with only two elements.Hence, the Diffie–Hellman key ex-
change can only yield in two different key and the attacker only has two test both possibilities to
determine the right key.

8.11

Alice Oscar Bob

αaA = bA
bA−−−−−→ αaO = bO

bO−−−−−→
bO←−−−−− bB←−−−−− αaB = bB

baA
O = αaA·aO = KAO baO

A = αaA·aO = KAO baB
O = αaB·aO = KBO

baO
B = αaB·aO = KBO
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Oscar shares now asecret key with Alice and Bob. Alice and Bob both don’t know about it and think
they share a key with each other. Oscar can now decrypt, read,and encrypt any messages between Alice
and Bob without them learning about it if he continues to intercept all encrypted messages.

This is the infamousman-in-the-middle attack. This attack is, in essence, responsible for things such
as certificates, public-key infrastructures, etc.

8.13
Computeβ : β = αd mod p.
Encrypt:(kE ,y) = (α i mod p,x ·β i mod p).
Decrypt:x = y(kd

E)
−1 mod p.

1. (kE ,y) = (29,296), x = 33
2. (kE ,y) = (125,301), x = 33
3. (kE ,y) = (80,174), x = 248
4. (kE ,y) = (320,139), x = 248

8.15
Oscar knowsxn, yn andn (by just counting the number of ciphertexts). The first step of a possible attack
is to calculate

kM,n = yn · x−1
n mod p. (13.3)

Caused by the previously mentioned PRNG, beginning withkM,n−1, kM, j−1 can easily calculated recur-
sivley through

kM, j−1 = β i j−1 = β i j− f ( j) = β i j ·β− f ( j) = kM, j−1 ·β− f ( j) mod p (13.4)

where the values of all variables are known. With the knowledge ofkM, j for all j, Oscar is now able to
decrypt the whole ciphertext by solving the usual decryption equation

x j = y j · k−1
M, j mod p (13.5)

8.17

1. By choosing a different secret exponenti, the ciphertexty of the same plaintextx is different every-
time. Even if a pair of plaintext/ciphertext is compromised, such a pair will most likely not repeat a
second time in a non-deterministic encryption scheme!

2. In general, there are #{2,3, · · · , p−2} = p−3 different valid ciphertexts for a single plaintext. I.e.,
we have 464 different possibilities forp = 467.

3. The plain RSA cryptosystem is deterministic. A specific plaintext always yields the same ciphertext
assuming the same public parameters.

Problems of Chapter 9

9.1 a = 2, b = 2
4 ·23+27·22 = 4 ·8+27·4= 32+108= 140≡ 4 6= 0 mod 17

9.3 17+1−2
√

17≈ 9,75≤ 19≤ 17+1+2
√

17≈ 26,25 q.e.d.

9.5

1. The points ofE are

{(0,3),(0,4),(2,3),(2,4),(4,1),(4,6),(5,3),(5,4)}

2. The group order is given by

#G = #{O,(0,3),(0,4),(2,3),(2,4),(4,1),(4,6),(5,3),(5,4)}= 9
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3. Compute all multiples ofα:

0 ·α = O

1 ·α = (0,3)

2 ·α = (2,3)

3 ·α = (5,4)

4 ·α = (4,6)

5 ·α = (4,1)

6 ·α = (5,3)

7 ·α = (2,4)

8 ·α = (0,4)

9 ·α = O = 0 ·α
⇒ ord(α) = 9= #G

⇒ α is primitive since it generates the group!

9.7

1. 9·P = (1001|2)P = (2 · (2 · (2 ·P)))+P= (4,10)
2. 20·P = (10100|2)P = (2 · (2 · (2 · (2 ·P)+P)))= (19,13)

9.9
K = aB = 6 ·B = 2(2B+B)

2B = (x3,y3) : x1 = x2 = 5;y1 = y2 = 9
s = (3x2

1+ a) · y−1
1 = (3 ·25+1)(2 ·9)−1= 76·18−1 mod 11

s≡ 10·8= 80≡ 3 mod 11
x3 = s2− x1− x2 = 32−10=−1≡ 10 mod 11
y3 = s(x1− x3)− y1 = 3(5−10)−9=−15−9=−24≡ 9 mod 11
2B = (10,9)

3B = 2B+B = (x′3,y
′
3) : x1 = 10,x2 = 5,y1 = 9,y2 = 9

s = (y2− y1)(x2− x1)
−1 = 0 mod 11

x′3 = 0− x1− x2 =−15≡ 7 mod 11
y′3 = s(x1− x3)− y1 =−y1 =−9≡ 2 mod 11
3B = (7,2)

6B = 2 ·3B = (x′′3,y
′′
3) : x1 = x2 = 7,y1 = y2 = 2

s = (3x2
1+ a) · y−1

1 = (3 ·49+1) ·4−1≡ 5 ·4−1≡ 5 ·3= 15≡ 4 mod 11
x′′3 = s2− x1− x2 = 42−14= 16−14= 2 mod 11
y′′3 = s(x1− x3)− y1 = 4(7−2)−2= 20−2= 18≡ 7 mod 11
6B = (2,7)⇒ KAB = 2

9.11
A brute-force attack on a 128 bit key currently is computitional infeasible!
In this context, a much more efficient attack is to make use of the correlation between thex− and
y− coordinate of a point. Since it is known that there is an inverse for every pointP = (x,y) with
−P = (x,−y), it would be the easiest approach to test all 264 possiblex−coordinates by solving the
curve equation. The effective key length is then reduced to 65 bit, which may be insufficient in a few
years (if this problem has not already been broken by well-funded intelligence services).

Problems of Chapter 10

10.1
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1. If a message from Alice to Bob is found to be authentic, i.e., in fact originated from Alice, integr ity
is automatically assured, since an alteration by Oscar would makehim the originator. However, this
can’t be the case if sender authenticity is assured.

2. No, a message can still be unaltered but message authenticity is not given. For instance, Oscar coul d
maskerade as Alice and send a message to Bob saying that it is from Alice. Although the message ar
rives unaltered at Bob’s (integrity is thus assured) senderauthenticity is not given.

10.3
Threats:

� Unauthorized physical access to the building, to the data, to the internal network.
� Social engineering.
� Data might be modified, secret data might be read (e.g. be personnel or remote via the network).
� Key generation might be predictable or weak.
� Key encryption might be weak.
� Integrity measures used might be weak.
� Data might be lost.
� Trust by the users might be lost.

Organization and physical measures:

� Physical access control to the building (e.g., guards).
� Training and guidelines for the personnel.
� Secure backup procedures.

IT security functions:

� Key generation (random number generator of ’good’ quality).
� Key distribution (encrypting+securing for data integrityof the session key).
� Access control of the network / firewall.
� Timestamp service.

10.5

1. 6292b ≡ x modn⇒ valid signature
2. 4768b 6= x modn⇒ invalid signature
3. 1424b ≡ x modn⇒ valid signature

10.7
Oscar recieves the message, alters it and signs it with his own private keya′. Then he sends the new
message together with the signature and the putatively approriate public key(n′,e′) of Alice (which is
instead the one of Oscar).

10.9

1. sigKpr(x) = xd modn = y

verKpub(x,y) : x
?≡ ye modn

Assume thatd hasl bits.
Using the square & multiply algorithm, the average signing will take:
#⊗≈ l squarings +1

2 · l multiplications =3
2 · l

Sinceb = 216+1≡ 65537≡ 10000000000000012, the average verification takes:
#⊗= 16squarings+1multiplication = 17

2. Signing takes longer than verification.

3.
l [bits] Tunit n Tunit

operation T (sig) T (ver)

512 100ns 16 25.6 µs 19.7 ms 435.2 µs
1024 100ns 32 102.4 µs 157.3 ms 1.741ms

4. T (1⊗) = ( l
8)

2 · 1
f ; time for one multiplication modulop

T (sig) =
3
2
· l · Tunit

operation
= 0.5 s
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Tunit

operation
=

l
8

2

·Tunit

F ≥ 1
Tunit

[Hz]

i) 6.29MHz
ii) 50.33MHz

10.11

1. αx = 310≡ 25 mod 31

a. γ = 17,δ = 5
t = β γ · γδ = 617 ·175≡ 26·26≡ 25 mod 31⇒ t = αx⇒ ver(x,(γ,δ )) = 1 (ok)

b. γ = 13,δ = 15
t = β γ · γδ = 613 ·1315≡ 6 ·30≡ 25 mod 31⇒ t = αx⇒ ver(x,(γ,δ )) = 1 (ok)

2. Due to the fact that the Elgamal signature scheme is probabilistic, there arep−1, i.e. 30, different
signatures for each messagex.

10.13

s1 ≡ (x1− d r)k−1
E1

mod p−1

s2 ≡ (x2− d r)k−1
E2

= (x2− d r)(kE1 +1)−1 mod p−1

⇒ s1

s2
≡ (x1− d r)(kE1 +1)

(x2− d r)kE1

mod p−1

⇔ kE1 =
1

s1 (x2−d r)
s2 (x1−d r) −1

mod p−1

⇒ d ≡ x1− s1 kE1

r
mod p−1

10.15 Similarly to the attack on Elgamal, an attacker can use following system of equations

s1 ≡ (SHA(x1)+ d r)k−1
E modq

s2 ≡ (SHA(x2)+ d r)k−1
E modq

for knowns1, s2, x1, andx2 to first compute the ephemeral keykE and then the private keyd:

s1− s2 ≡ k−1
E (SHA(x1)− SHA(x2)) modq

⇔ kE ≡
SHA(x1)− SHA(x2)

s1− s2
modq

⇒ d ≡ s1 · kE − SHA(x1)

r
modq

Problems of Chapter 11

11.1

1. A1=E0+ f1(B0,C0,D0)+(A)<<<5+Wj+Kt = 5A827999hex B1 =A0= 00000000hex C1 =(B0)<<<30=
00000000hex D1 =C0 = 00000000hex E1 = D0 = 00000000hex

2. A1=E0+ f1(B0,C0,D0)+(A)<<<5+Wj+Kt = 6A827999hex B1 =A0= 00000000hex C1 =(B0)<<<30=
00000000hex D1 =C0 = 00000000hex E1 = D0 = 00000000hex
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11.3

e

i

Hi−1

xi

H
(a) e(Hi−1,xi)⊕ xi

e

i

xi

Hi−1

H
(b) e(Hi−1,xi⊕Hi−1)⊕ xi⊕Hi−1

e

i

xi

Hi−1

H
(c) e(Hi−1,xi)⊕ xi⊕Hi−1

e

i

xi

Hi−1

H
(d) e(Hi−1,xi⊕Hi−1)⊕ xi

e

i

i−1H

xi

H
(e) e(xi,Hi−1)⊕Hi−1

e

i

i−1H

xi

H
(f) e(xi,xi⊕Hi−1)⊕ xi⊕Hi−1
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e

i

i−1H

xi

H
(g) e(xi,Hi−1)⊕ xi⊕Hi−1

e

i

i−1H

xi

H
(h) e(xi,xi⊕Hi−1)⊕Hi−1

e

i

i−1H

xi

H
(i) e(xi⊕Hi−1,xi)⊕ xi

e

i

xi

i−1H

H
(j) e(xi⊕Hi−1,Hi−1)⊕Hi−1

e

i

i−1H

xi

H
(k) e(xi⊕Hi−1,xi)⊕Hi−1

e

i

xi

i−1H

H
(l) e(xi⊕Hi−1,Hi−1)⊕ xi

11.5
Birthday attack: k ≈

√

n ·m · 1
1−ε

n ε = 0.5 ε = 0.1
264 3.6 ·109 1.4 ·109

2128 1.5 ·1019 6.0 ·1018

2160 1.5 ·1024 3.9 ·1023

number of messages after which probability for collision isε

11.7

1. 128 bit
2. If c = 0, both halfs of the output compute exactly the same 64 bit value. Hence, even thoughyU has

128 bit, it only has an entropy of 64 bit. You, as an attacker, simply provide(H0,L, H0,R) and some
start value forxi (e..g., 64 zeros) as input to the hash function. You now search through possible
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passwords by incrementingxi. This way, you will generate pseudo-random outputsy. Even though
there is a chance you will not generateyU at the output, the likelihood is small. Note that you can
also try valuesxi which have more than 64 bit by iterating the hash function.

3. A second-preimage attack
4. Whenc 6= 0 both halfs of the output will almost never be the same. So, the entropy of the output

grows to (round about) 128 bit which makes a second-preimageattack computational infeasible.

Problems of Chapter 12

12.1

1. � Calculatex||h = e−1
k1
(y).

� Calculateh′ = H(k2||x).
� If h = h′, the message is authentic. Ifh 6= h′, either the message or the MAC (or both) has been

altered during transfer.
2. � Calculatex||s = e−1

k1
(y).

� Calculateh′ = H(x).
� Verify the signature:verkpub(s,H(x))

12.3

1. ci = zi
⊕{x1x2 . . .xn‖H1(x)H2(x) . . .Hm(x)}; i = 1,2, . . . ,n+m

1) Assumex hasn bits. Oscar first computes
zi = xi⊕ ci; i = 1,2, . . . ,n
2) Oscar recomputesH(x) since he knowsx.
3) AssumeH(x) hasm output bits. Oscar computes
z j+n = H j(x)⊕ c j+n j = 1,2, . . . ,m
4) Oscar computesH(x′)
5) Oscar computes
c′i = zi⊕ x′i i = 1,2, . . . ,n
c′j+n = z j+n⊕H j(x′) j = 1,2, . . . ,m

2. No. Although Oscar can still recoverz1,z2, . . . ,zn, he can not recover the bit-stream portionzn+1,zn+2, . . . ,zn+m

which was used for encryptingMACk2(x). Even if he would know the whole bit-stream, he would not
be able to compute a validMACk2(x

′) since he does not knowk2.

12.5

1. This attack assumes that Oscar can trick Bob into signing the messagex1. This is, of course, not
possible in every situation, but one can imagine scenarios where Oscar can pose as an innocent party
andx1 is the message being generated by Oscar.

Alice Oscar Bob
x1−−−−−→

m = MACk(x1)
(x2,m)←−−−−− replace!

(x1,m)←−−−−−
m′ = MACk(x2)
verk(m′,m) = true

2. For constructing collisions, Oscar must be able to compute about
√

2n MACs, wheren is the output
width. Since Oscar does not have the secret key, he has to somehow trick Alice and/or Bob into
computing MACs for that many messages. This is in practice often impossible. On the other hand,
collisions for hash functions can be constructed by Oscar byhimself without the help of Alice and
Bob because these computations are un-keyed.
An 80 bit MAC provides thus a security of 280 since collision attacks are not applicable. A hash
function with the same output size offers only a security of about 240.
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Problems of Chapter 13

13.1

1. (1) Session keys are derived by a linear and invertible(!)operation of the previous session key.
(2) Usage of hash functions, thus a non-linear correlation of the session keys.
(3) Usage of the masterkey and the previous session key for every derivation of the next session key.

2. Methods (2) and (3), since the old session keys cannot be extracted from the recent session key
3. (1) every session, since PFS is missing

(2) every session using the hacked session keyKn and every following session
(3) only the recent session, since the (unknown) masterkey is used for every furterh key derivation

4. No, since then, all session keys can be calculated!

13.3
The first class of encryptions (between the KDC and a user) should be done using 3DES. The session
between two arbitrary users (the second class) should be encrypted using DES. There are two major
reasons for this choice:

� A brute-force attack against DES is already possible and affordable even for non-govermental orga-
nizations. If a session key is compromised, only the corresponding session will be involved. Though,
if it were possible to find a certainKU,KDC , all previous and future communication of the user U
could be eavesdropped. This being the case and since there are no known attacks against 3DES with
an affordable complexicity, 3DES should be used for encrypting the session keys.

� The amount of plaintext to be encrypted vary widely for both classes:
In the first case, only one session key consisting of a few bytes has to be encrypted, while a session
(i.e. the second class) may consist of a vast amount of data, e.g. multiple gigabytes for video confer-
ences. Since 3DES is round about three times slower than DES,it would seem the thing to use the
faster DES algorithm for the session data and the slower (butmore secure) 3DES for the session key
encryption.

13.5
Assuming that the hacker obtains the keyKi

U,KDC , he can initially encrypt recent session data, where
the session keysKses are encrypted withKi

U,KDC . He will also be able to decrypt the following keys

Ki+ j
U,KDC until the attack is detected (ty) and new keys are exchanged using a secure channel. Hence, all

communication betweentx andty may be compromised. Though, he is, even with knowledge ofKi
U,KDC ,

not able to recoverKi−1
U,KDC . Hence, he cannot decrypt messages before the point of timetx. In conclusion,

this variant provides Perfect Forward Secrecy.

13.7

1. Once Alice’s KEKkA is being compromised, Oscar can compute the session keykses and, thus,
decrypt all messages.

2. The same applies to a compromised KEKkB of Bob.

13.9

1. t = 106bits/sec
storage = t · r = 2h ·106 bits/sec = 2 ·3600·106bits/sec = 7.2 Gbits = 0.9 GByte
Storage of less than 1 GByte can be done at moderate costs, e.g., on hard disks or CDs.

2. Compute # keys that an attacker can recover in 30 days:
# Keys = 30days

10min = 30·24·60
10 = 4320

Key derivation period:
TKder =

2h
4320= 1.67sec

Since hash functions are fast, a key derivation can easily beperformed (in software) at such a rate.

13.11

� Alice: A = 2228≡ 394 mod 467
kAO = Oa = 156228≡ 243 mod 467
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� Bob:B = 257≡ 313 mod 467
kBO = Ob = 15657≡ 438 mod 467

� Oscar:O = 216≡ 156 mod 467
kAO = Ao = 39416≡ 243 mod 467,kBO = Bo = 31316≡ 438 mod 467,

13.13

1. Alice would detect this forgery, since the certificateC(O) is cryptographically bound to the ID of
Oscar and not to ID(A), which she expected.

2. This kind of forgery would be detected by validating the CA’s signature of the public key, which will
naturally fail.

13.15
The signature of the CA merely covers thepublic key of a userkpubi = αai . Even if all parameters of the
signature algorithm are announced, the private key will remain incalculable (DL-problem!). I.e., Oscar
cannot calculate the session keys which were used before he recognized the CA’s signature algorithm
and key. However, he is now capable of passing of himself as any user affiliated to the domain by
providing counterfeited certificates.

13.17

 

message x

choose random k

z = AES k

x = AES k (z)
−1

B Cert , dB Cert

y = k   mod n
 e

k = y   mod n
 d

y

Alice

z

Bob

(x)

13.19 PGP makes use of the so calledWeb of Trust-Architecture. In contradictance of tree based archi-
tectures, a WoT only consists of equal nodes (persons) whereeach node is eligible to certify each other.
The validity of acertificate is then confirmed through a so called Chain of Trust. In principle, Alice trusts
in certificates which she created herself e.g. for Bob. Then she also trusts in a certificate Bob created
and so on. The main advantage of this system is the lack of arbitrary trusted CAs with the drawback of
partially long and complicated Chains of Trust.


